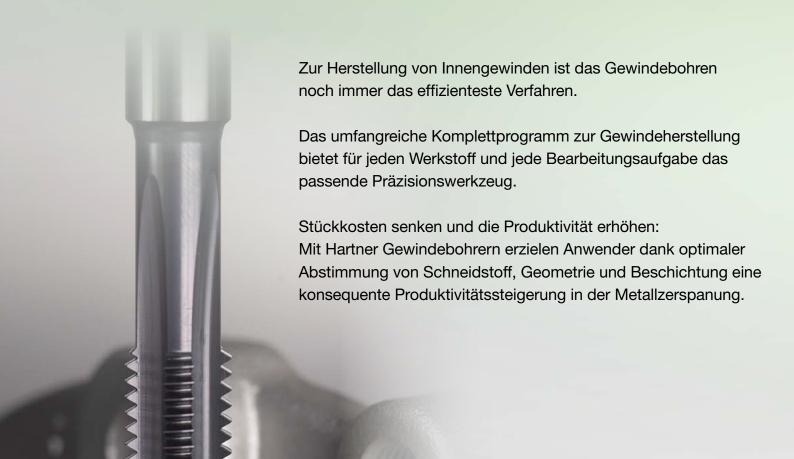


Präzisionswerkzeuge

Gewindewerkzeuge


Das neue Komplettprogramm zur universellen Gewindeherstellung

Präzisionswerkzeuge

HARTNER GEWINDEWERKZEUGE

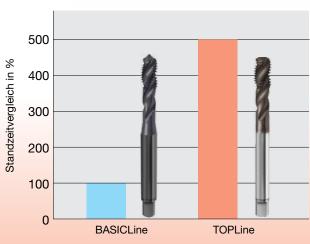
TG 100 UBASICLine Gewindebohrer

TG 100 TTOPLine Gewindebohrer

TG 100 GGGewindebohrer für die Gussbearbeitung

TG 300 THigh-Performance Gewindebohrer für die Gussbearbeitung

Gewindeformer


BASICLine

TOPLine

TG 100 T

- High-Performance-Gewindebohrer für anspruchsvolle Bearbeitungen in allgemeinen, hochfesten und rostfreien Stählen
- optimierte Schneidengeometrie für bestmöglichen Spantransport
- ultraglatte TiAIN-Beschichtung und verbesserte Spanflussgeometrie für einen wirkungsvollen Verschleißschutz und höchste Standmengen bei hervorragender Gewindequalität

DIE LEISTUNGSSTARKEN

TG 100 GG

- Gewindebohrer zur Bearbeitung von Gusswerkstoffen und kurzspanenden Nichteisenmetallen
- Gussgeometrie mit nitrierter Oberfläche für eine wirtschaftliche Bearbeitung
- bemerkenswertes Preis-Leistungs-Verhältnis für kleine Losgrößen

TG 300 T

- High Performance Gewindebohrer mit breitem Anwendungsspektrum für anspruchsvolle Bearbeitungsaufgaben in sämtlichen Gusswerkstoffen, allgemeinen und hochfesten Stählen und Aluminium-Gusslegierungen
- gerade genutete Schneidengeometrie für höhere Stabilität und zur Erzeugung kurzer Späne
- die Kombination aus HSS-E-PM-Schneidstoff, TiCN-Beschichtung und Innenkühlung sorgt für hohe Verschleißfestigkeit und ergibt prozesssicher höchste Standmengen

FORMEN

GEWINDEFORMER

- Gewindeformer zum spanlosen Gewinden von Durchgangs- und Sacklöchern
- Schmiernuten sorgen für optimale Versorgung mit Kühlschmierstoff
- dank TiN-Beschichtung und spezieller Geometrie hohe Verschleißfestigkeit in nahezu allen Werkstoffen
- durch die Verformung wird im Bereich des Gewindes am Bauteil eine erhöhte Festigkeit erzielt

Gewindebohrer und -former nach DIN-Norm

Bohrungsart									
		Schneidstoff			HSS-E			HSS-E-PM	HSS-E
		Typ/Form	TG 100 U/B	TG 100 T/B	TG 100 U/C	TG 100 T/C	TG 100 GG/C	TG 300 T/C	N/C
		Oberfläche		A		A		C	T
			BASICLine						
							TIMERINA AND AND AND AND AND AND AND AND AND A		
Gewindeart	Toleranz- feld	Baumaße nach				ArtNr. Ø-Bereich Preisseite			
	ISO 2		80700 M2	80800 M2	80730 M2	80830 M2			
	6H		M10 Seite 14	M10 Seite 16	M10 Seite 15	M10 Seite 17			
		DIN 371					80750 M3	80850 M5	80900 M3
	6HX						– M10 Seite 18	– M10 Seite 19	– M10 Seite 45
М			80700 M12	80800 M12	80730 M12	80830 M12			
	ISO 2 6H		– M36 Seite 14	– M30 Seite 16	– M36 Seite 15	– M30 Seite 17			
		DIN 376	CORO 11	Conto 10	Conto 10	Conto 17	80750 M12	80850 M12	80900 M12
	6HX						– M30 Seite 18	– M39 Seite 19	– M39 Seite 45
	ISO 2		80701 M4x0,5	80801 M3x0,35	80731 M4x0,5	80831 M6x0,75	Come To	Colle 10	
	6H		– M42x1,5 Seite 22	M36x2 Seite 24	M30x2 Seite 23	– M24x1,5 Seite 25			
MF		DIN 374					80751 M4x0,5	80851 M6x0,75	80901 M6x0,75
	6HX						– M30x1,5 Seite 26	– M16x1,5 Seite 27	– M24x1,5 Seite 47
			80702 Nr.4-40	80802 Nr.4-40	80732 Nr.2-56	80832 Nr.4-40	80752 Nr.4-40		80902 * Nr.4-40
	2B	~ DIN 371	3/8-16 Seite 30	3/8-16 Seite 32	3/8-16 Seite 31	3/8-16 Seite 33	3/8-16 Seite 34		3/8-16 Seite 49
UNC			80702 7/16-14	80802 7/16-14	80732 7/16-14	80832 7/16-14	80752 7/16-14		80902* 7/16-14
	2B	~ DIN 376	– 1-8 Seite 30	– 1-8 Seite 32	- 7/8-9 Seite 31	- 7/8-9 Seite 33	– 1-8 Seite 34		- 1-8 Seite 49
			80703 Nr.4-48	80803 Nr.4-48	80733 Nr.3-56	80833 Nr.10-32	80753 Nr.4-48		80903 * Nr.4-48
UNF	2B	~ DIN 374	- 1-12 Seite 35	- 1-12 Seite 37	- 1-12 Seite 36	- 1-12 Seite 38	- 1-12 Seite 39		3/4-16 Seite 50
			80704 G 1/8	80804 G 1/8	80734 G 1/16	80834 G 1/16	80754 G 1/16		80904 G 1/16
G	-	DIN 5156	– G 2 Seite 40	– G 1 Seite 42	– G 2 Seite 41	– G 1 Seite 43	– G 2 Seite 44		– G 3/4 Seite 51
			Jene 40	Jeile 42	Ocite 41	Ocite 40	OCILE 44		Ocite 31

Oblank

*Toleranzfeld 2BX

dampfbehandelt

nitriert

TiN

A TIAIN

Gewindebohrer und -former nach JIS-Norm

80981 M6x0,75

M20x1,5 Seite 48

Bohrungsart Schneidstoff HSS-E	N/C
Schneidstoff HSS-E	
Typ/Form TG 100 U/B TG 100 U/C	1
Oberfläche	
BASICLine BASICLine	
Toleranz- feld Baumaße ArtNr. Ø-Bereich Preisseite	
Class 1	
4430 Class 2 RH	80980 M4 - M20 Seite 46
Class 1	

Gewindeart

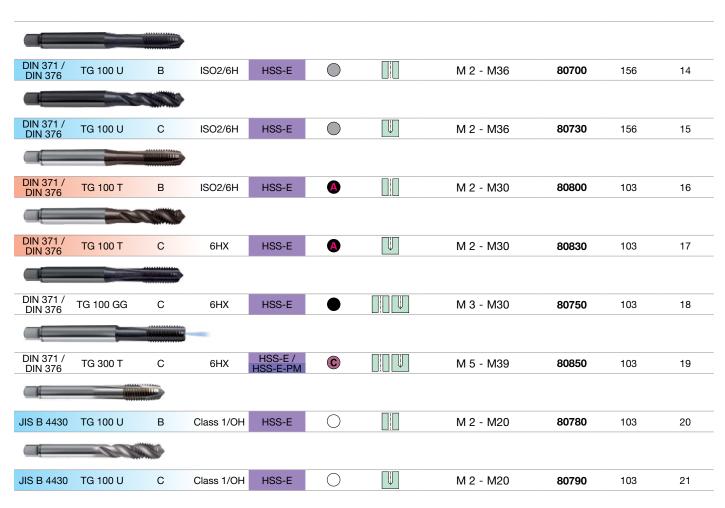
М

MF

für Durchgangsgewinde

Class 2 RH

JIS B 4430

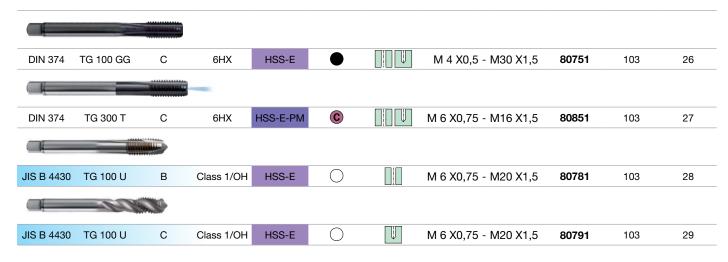

für Sacklochgewinde

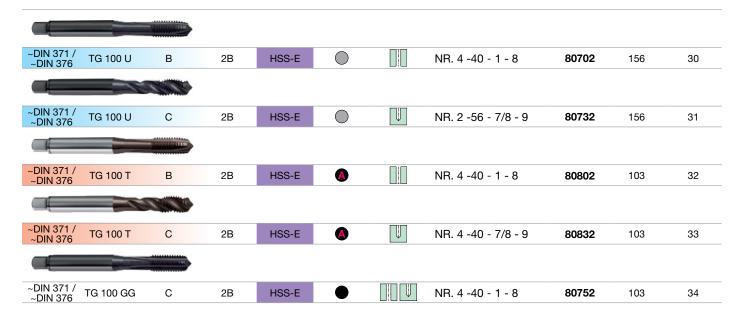
Maschinen-Gewindebohrer

Norm	Тур	Form	Durchmes- sertoleranz	Schneid- stoff	Ober- fläche	Bohrungs- art	d1	Bestell-Nr.	Rabatt- gruppe	Programm auf Seite

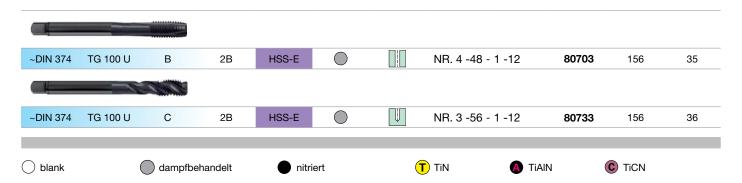
Gewindebohrer für Metrische ISO-Gewinde

Gewindebohrer für Metrische ISO-Feingewinde


		MINIMU								
DIN 374	TG 100 U	В	ISO2/6H	HSS-E			M 4 X0,5 - M42	X1,5 80701	156	22
4	_7	No.								
DIN 374	TG 100 U	С	ISO2/6H	HSS-E			M 4 X0,5 - M30	X2 80731	156	23
DIN 374	TG 100 T	В	ISO2/6H	HSS-E	A		M 3 X0,35 - M36	X2 80801	103	24
		N. Co								
DIN 374	TG 100 T	С	6HX	HSS-E	A		M 6 X0,75 - M24	X1,5 80831	103	25
blank		dampfb	ehandelt	nitr	iert	C	TiN	TiAIN	C TICN	

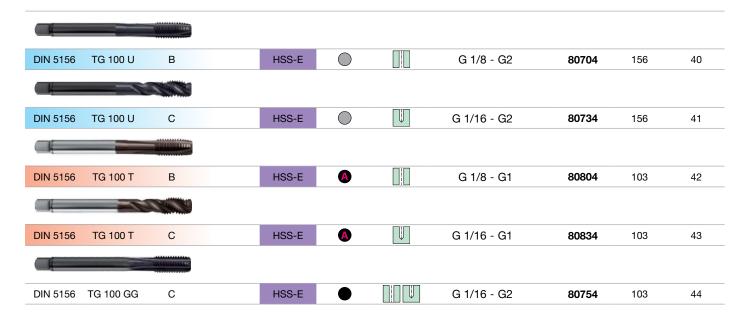

Maschinen-Gewindebohrer

Į									, ,		
	Norm	Тур	Form	Durchmes- sertoleranz	Schneid- stoff	Ober- fläche	Bohrungs- art	d1	Bestell-Nr.	Rabatt- gruppe	Programm auf Seite


Gewindebohrer für Metrische ISO-Feingewinde

Gewindebohrer für UNC-Gewinde

Gewindebohrer für UNF-Gewinde


Maschinen-Gewindebohrer

Norm	Тур	Form	Durchmes- sertoleranz	Schneid- stoff	Ober- fläche	Bohrungs- art	d1	Bestell-Nr.	Rabatt- gruppe	Programm auf Seite

Gewindebohrer für UNF-Gewinde

~DIN 374	TG 100 T	В	2B	HSS-E	A	NR. 4 -48 - 1 -12	80803	103	37
~DIN 374	TG 100 T	С	2B	HSS-E	A	NR.10 -32 - 1 -12	80833	103	38
		MANAGEMENT							
~DIN 374	TG 100 GG	С	2B	HSS-E		NR. 4 -48 - 1 -12	80753	103	39

Gewindebohrer für Whitworth-Rohrgewinde

Gewindeformer mit Schmiernuten

	Тур	Form	Durchmes- sertoleranz	Schneid- stoff	Ober- fläche	Bohrungs- art	d1	Bestell-Nr.	Rabatt- gruppe	Programma auf Seite
Gewir	ndefoi	rmer fü	ir Metri	sche IS	SO-Ge	winde				

DIN 371 / -DIN 376	N	С	6HX	HSS-E	T		M 3 - M39	80900	103	45
IS B 4430	N	C	Class 2/RH	HSS-E	T		M 4 - M20	80980	103	46
Gewir	ndefoi	rmer fü	ir Metri	sche IS	SO-Fe	ingewii	nde			
-DIN 374	N	С	6НХ	HSS-E	T		M 6 X0,75 - M24 X1,5	80901	103	47
4		***************************************								
S B 4430	N	С	Class 2/RH	HSS-E	T		M 6 X0,75 - M20 X1,5	80981	103	48
DIN 271 /		**************************************	•							
	N	C	2BX	HSS-E	T		NR. 4 -40 - 3/4 -10	80902	103	49
-DIN 376			2BX				NR. 4 -40 - 3/4 -10	80902	103	49
							NR. 4 -40 - 3/4 -10	80902	103	49
-DIN 376							NR. 4 -40 - 3/4 -10 NR. 4 -48 - 3/4 -16	80902 80903	103	49
Gewir DIN 371 / -DIN 374	ndefoi	rmer fü	ir UNF-	Gewine	de		NR. 4 -48 - 3/4 -16			
Gewir DIN 371 / -DIN 374	ndefoi	rmer fü	ir UNF-(Gewine	de		NR. 4 -48 - 3/4 -16			
Gewir DIN 371 / -DIN 374	ndefoi	rmer fü	ir UNF-(Gewine	de		NR. 4 -48 - 3/4 -16			
Gewir DIN 371 / DIN 374 Gewir	ndefoi N	c rmer fü	ir UNF-(Gewind HSS-E Vorth-F	de T	ewinde	NR. 4 -48 - 3/4 -16	80903	103	50
Gewir Din 371 / Din 374 Gewir	ndefoi N	c rmer fü	ir UNF-(Gewind HSS-E Vorth-F	de T	ewinde	NR. 4 -48 - 3/4 -16	80903	103	50
Gewir Din 371 / Din 374 Gewir	ndefoi N	c rmer fü	ir UNF-(Gewind HSS-E Vorth-F	de T	ewinde	NR. 4 -48 - 3/4 -16	80903	103	50

Durchgangsgewinde

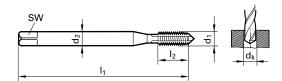
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80700

Typ TG 100 U

Norm DIN 371 / DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form B

Durchmessertoleranz ISO2/6H

Rabattgruppe 156

d1	Р	d2	SW	dk	I1	12	Stückpreis in €
	mm	mm		mm	mm	mm	
M 2	0,40	2,800	2,10	1,600	45,00	8,00	16,80
M 3	0,50	3,500	2,70	2,500	56,00	10,00	13,10
M 4	0,70	4,500	3,40	3,300	63,00	12,00	13,10
M 5	0,80	6,000	4,90	4,200	70,00	14,00	13,10
M 6	1,00	6,000	4,90	5,000	80,00	16,00	13,10
M 8	1,25	8,000	6,20	6,800	90,00	17,00	17,90
M10	1,50	10,000	8,00	8,500	100,00	20,00	20,00
M12	1,75	9,000	7,00	10,200	110,00	24,00	28,50
M14	2,00	11,000	9,00	12,000	110,00	26,00	30,00
M16	2,00	12,000	9,00	14,000	110,00	26,00	43,00
M18	2,50	14,000	11,00	15,500	125,00	30,00	64,00
M20	2,50	16,000	12,00	17,500	140,00	32,00	65,00
M22	2,50	18,000	14,50	19,500	140,00	32,00	84,00
M24	3,00	18,000	14,50	21,000	160,00	36,00	85,00
M27	3,00	20,000	16,00	24,000	160,00	36,00	107,00
M30	3,50	22,000	18,00	26,500	180,00	40,00	136,00
M36	4,00	28,000	22,00	32,000	200,00	50,00	218,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

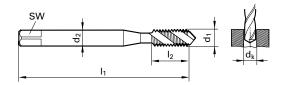
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80730

Typ TG 100 U

Norm DIN 371 / DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz ISO2/6H

Rabattgruppe 156

d1	Р	d2	SW	dk	l1	12	Stückpreis in €
	mm	mm		mm	mm	mm	ошокрівіз її с
M 2	0,40	2,800	2,10	1,600	45,00	4,50	18,40
M 3	0,50	3,500	2,70	2,500	56,00	6,00	16,70
M 4	0,70	4,500	3,40	3,300	63,00	7,50	16,70
M 5	0,80	6,000	4,90	4,200	70,00	8,50	16,70
M 6	1,00	6,000	4,90	5,000	80,00	11,00	16,70
M 8	1,25	8,000	6,20	6,800	90,00	14,00	20,00
M10	1,50	10,000	8,00	8,500	100,00	16,00	23,50
M12	1,75	9,000	7,00	10,200	110,00	18,50	30,00
M14	2,00	11,000	9,00	12,000	110,00	20,00	39,50
M16	2,00	12,000	9,00	14,000	110,00	20,00	43,50
M20	2,50	16,000	12,00	17,500	140,00	25,00	66,00
M22	2,50	18,000	14,50	19,500	140,00	27,00	102,00
M24	3,00	18,000	14,50	21,000	160,00	30,00	84,00
M27	3,00	20,000	16,00	24,000	160,00	30,00	123,00
M30	3,50	22,000	18,00	26,500	180,00	35,00	149,00
M36	4,00	28,000	22,00	32,000	200,00	40,00	238,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

Durchgangsgewinde

Hochleistungs-Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

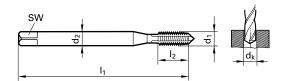
TOPLine

Bestell-Nr. 80800

Typ TG 100 T

Norm DIN 371 / DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche A

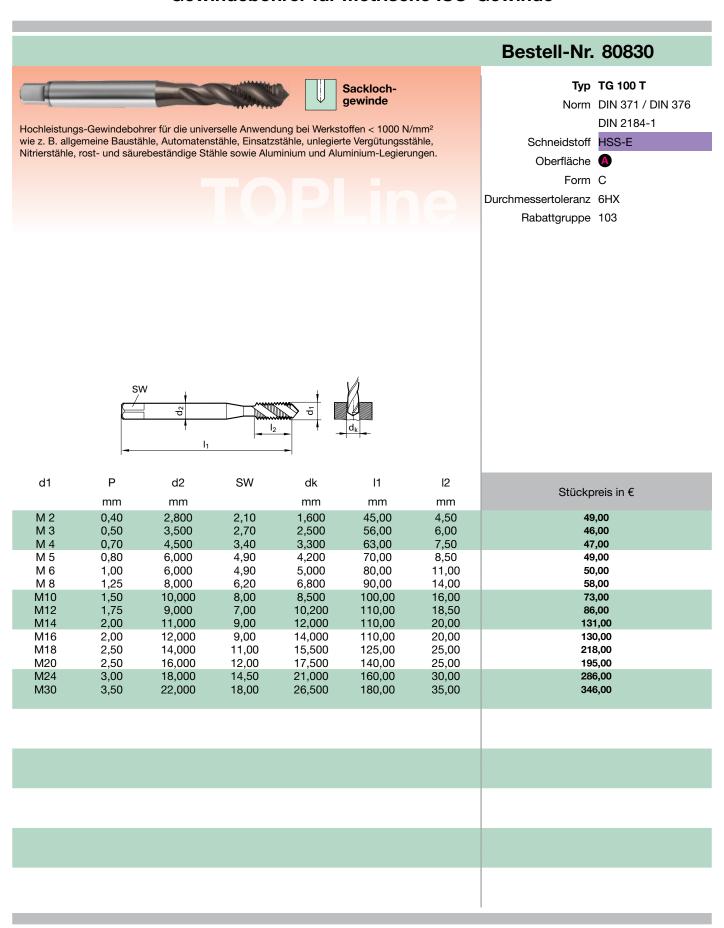
Form B

Durchmessertoleranz ISO2/6H

Rabattgruppe 103

d1	Р	d2	SW	dk	l1	12	Stückpreis in €
	mm	mm		mm	mm	mm	
M 2	0,40	2,800	2,10	1,600	45,00	8,00	47,00
M 2,5	0,45	2,800	2,10	2,050	50,00	9,00	44,00
M 3	0,50	3,500	2,70	2,500	56,00	10,00	36,50
M 3,5	0,60	4,000	3,00	2,900	56,00	12,00	47,00
M 4	0,70	4,500	3,40	3,300	63,00	12,00	37,00
M 5	0,80	6,000	4,90	4,200	70,00	14,00	37,00
M 6	1,00	6,000	4,90	5,000	80,00	16,00	49,00
M 8	1,25	8,000	6,20	6,800	90,00	17,00	54,00
M10	1,50	10,000	8,00	8,500	100,00	20,00	68,00
M12	1,75	9,000	7,00	10,200	110,00	24,00	80,00
M14	2,00	11,000	9,00	12,000	110,00	26,00	130,00
M16	2,00	12,000	9,00	14,000	110,00	26,00	116,00
M18	2,50	14,000	11,00	15,500	125,00	30,00	210,00
M20	2,50	16,000	12,00	17,500	140,00	32,00	191,00
M24	3,00	18,000	14,50	21,000	160,00	36,00	264,00
M27	3,00	20,000	16,00	24,000	160,00	36,00	322,00
M30	3,50	22,000	18,00	26,500	180,00	40,00	345,00

O blank


dampfbehandelt

nitriert

TiN

A TIAIN

TiN

() blank

dampfbehandelt

nitriert

A TIAIN

Bestell-Nr. 80750

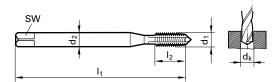
Durchgangs-/ Sacklochgewinde

Gewindebohrer für Gusswerkstoffe wie z. B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle.

Typ TG 100 GG

Norm DIN 371 / DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

d1	Р	d2	SW	dk	l1	12	Stückpreis in €
	mm	mm		mm	mm	mm	Otdokprois in C
M 3	0,50	3,500	2,70	2,500	56,00	10,00	25,50
M 3,5	0,60	4,000	3,00	2,900	56,00	12,00	28,00
M 4	0,70	4,500	3,40	3,300	63,00	12,00	26,00
M 5	0,80	6,000	4,90	4,200	70,00	14,00	26,50
M 6	1,00	6,000	4,90	5,000	80,00	16,00	26,50
M 8	1,25	8,000	6,20	6,800	90,00	17,00	30,50
M10	1,50	10,000	8,00	8,500	100,00	20,00	37,00
M12	1,75	9,000	7,00	10,200	110,00	24,00	45,50
M14	2,00	11,000	9,00	12,000	110,00	26,00	70,00
M16	2,00	12,000	9,00	14,000	110,00	26,00	66,00
M18	2,50	14,000	11,00	15,500	125,00	30,00	113,00
M20	2,50	16,000	12,00	17,500	140,00	32,00	108,00
M22	2,50	18,000	14,50	19,500	140,00	32,00	195,00
M24	3,00	18,000	14,50	21,000	160,00	36,00	140,00
M27	3,00	20,000	16,00	24,000	160,00	36,00	228,00
M30	3,50	22,000	18,00	26,500	180,00	40,00	230,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

Bestell-Nr. 80850

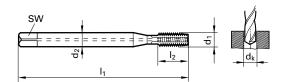
Durchgangs-/ Sacklochgewinde

Gewindebohrer mit Innenkühlung für Gusswerkstoffe wie z.B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle für höchste Standzeiten. Außerdem hervorragend geeignet zur Erzeugung kurzer Späne in allgemeinen und hochfesten Stählen. Ab einer Gewindegröße von ≥ M16 werden die Gewindebohrer Typ TG 300 T nicht mehr in HSS-E-PM, sondern HSS-E gefertigt.

Typ TG 300 T

Norm DIN 371 / DIN 376

DIN 2184-1


Schneidstoff HSS-E / HSS-E-PM

Oberfläche C

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

d1	Р	d2	SW	dk	l1	12	Stückpreis in €
	mm	mm		mm	mm	mm	Stuckpiels III C
M 5	0,80	6,000	4,90	4,200	70,00	14,00	64,00
M 6	1,00	6,000	4,90	5,000	80,00	16,00	61,00
M 8	1,25	8,000	6,20	6,800	90,00	17,00	73,00
M10	1,50	10,000	8,00	8,500	100,00	20,00	103,00
M12	1,75	9,000	7,00	10,200	110,00	24,00	95,00
M14	2,00	11,000	9,00	12,000	110,00	26,00	119,00
M16	2,00	12,000	9,00	14,000	110,00	20,00	116,00
M20	2,50	16,000	12,00	17,500	140,00	25,00	180,00
M24	3,00	18,000	14,50	21,000	160,00	30,00	208,00
M27	3,00	20,000	16,00	24,000	160,00	30,00	274,00
M30	3,50	22,000	18,00	26,500	180,00	35,00	304,00
M33	3,50	25,000	20,00	29,500	180,00	35,00	496,00
M36	4,00	28,000	22,00	32,000	200,00	40,00	620,00
M39	4,00	32,000	24,00	35,000	200,00	40,00	660,00

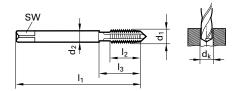
Durchgangsgewinde

Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80780

Typ TG 100 U

Norm JIS B 4430


Schneidstoff HSS-E

Oberfläche O

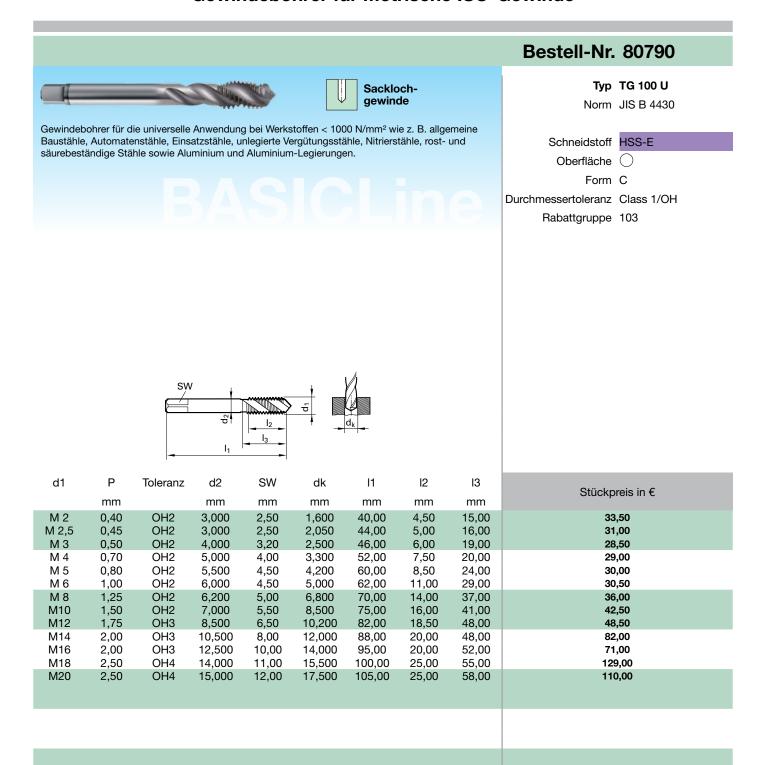
Form B

Durchmessertoleranz Class 1/OH

Rabattgruppe 103

d1	Р	Toleranz	d2	SW	dk	l1	12	13	Stückpreis in €
	mm		mm	mm	mm	mm	mm	mm	
M 2	0,40	OH2	3,000	2,50	1,600	40,00	8,00	15,00	38,00
M 2,5	0,45	OH2	3,000	2,50	2,050	44,00	9,00	16,00	35,50
М3	0,50	OH2	4,000	3,20	2,500	46,00	10,00	19,00	27,50
M 4	0,70	OH2	5,000	4,00	3,300	52,00	12,00	20,00	28,00
M 5	0,80	OH2	5,500	4,50	4,200	60,00	14,00	24,00	28,00
M 6	1,00	OH2	6,000	4,50	5,000	62,00	16,00	29,00	28,50
M 8	1,25	OH2	6,200	5,00	6,800	70,00	17,00	37,00	33,00
M10	1,50	OH2	7,000	5,50	8,500	75,00	20,00	41,00	39,50
M12	1,75	OH3	8,500	6,50	10,200	82,00	24,00	48,00	50,00
M14	2,00	OH3	10,500	8,00	12,000	88,00	26,00	48,00	76,00
M16	2,00	OH3	12,500	10,00	14,000	95,00	26,00	52,00	74,00
M18	2,50	OH4	14,000	11,00	15,500	100,00	30,00	55,00	127,00
M20	2,50	OH4	15,000	12,00	17,500	105,00	32,00	58,00	116,00

O blank


dampfbehandelt

nitriert

TiN

A TIAIN

() blank

dampfbehandelt

nitriert

T TIN A TIAIN C TICN

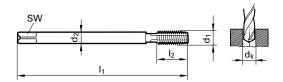
Durchgangsgewinde

Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80701

Typ TG 100 U

Norm DIN 374


DIN 2184-1

Schneidstoff HSS-E

Oberfläche

Form B Durchmessertoleranz ISO2/6H

Rabattgruppe 156

d1 XP	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		
M 4 X0,5	2,800	2,10	3,500	63,00	8,00	4,003	29,00
M 5 X0,5	3,500	2,70	4,500	70,00	10,00	5,003	29,00
M 6 X0,75	4,500	3,40	5,200	80,00	13,00	6,004	29,00
M 8 X0,75	6,000	4,90	7,200	80,00	14,00	8,004	32,00
M 8 X1	6,000	4,90	7,000	90,00	17,00	8,005	26,00
M10 X1	7,000	5,50	9,000	90,00	17,00	10,005	26,50
M12 X1	9,000	7,00	11,000	100,00	20,00	12,005	34,00
M12 X1,5	9,000	7,00	10,500	100,00	20,00	12,007	30,50
M14 X1,5	11,000	9,00	12,500	100,00	20,00	14,007	43,50
M16 X1,5	12,000	9,00	14,500	100,00	22,00	16,007	44,50
M18 X1,5	14,000	11,00	16,500	110,00	25,00	18,007	62,00
M20 X1,5	16,000	12,00	18,500	125,00	25,00	20,007	69,00
M22 X1,5	18,000	14,50	20,500	125,00	25,00	22,007	99,00
M24 X1,5	18,000	14,50	22,500	140,00	28,00	24,007	85,00
M24 X2	18,000	14,50	22,000	140,00	28,00	24,008	83,00
M26 X1,5	18,000	14,50	24,500	140,00	28,00	26,007	93,00
M27 X1,5	20,000	16,00	25,500	140,00	28,00	27,007	116,00
M27 X2	20,000	16,00	25,000	140,00	28,00	27,008	112,00
M28 X1,5	20,000	16,00	26,500	140,00	28,00	28,007	114,00
M30 X1,5	22,000	18,00	28,500	150,00	28,00	30,007	112,00
M30 X2	22,000	18,00	28,000	150,00	28,00	30,008	127,00
M32 X1,5	22,000	18,00	30,500	150,00	28,00	32,007	143,00
M36 X1,5	28,000	22,00	34,500	170,00	30,00	36,007	173,00
M42 X1,5	32,000	24,00	40,500	170,00	30,00	42,007	226,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

Sacklochgewinde

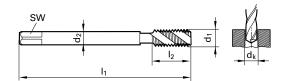
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80731

Typ TG 100 U

Norm DIN 374

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz ISO2/6H

Rabattgruppe 156

d1 XP	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Stuckpreis in €
M 4 X0,5	2,800	2,10	3,500	63,00	5,00	4,003	29,00
M 5 X0,5	3,500	2,70	4,500	70,00	5,00	5,003	29,00
M 6 X0,75	4,500	3,40	5,200	80,00	8,00	6,004	31,00
M 8 X1	6,000	4,90	7,000	90,00	11,00	8,005	25,00
M10 X1	7,000	5,50	9,000	90,00	11,00	10,005	26,00
M10 X1,25	7,000	5,50	8,800	100,00	14,00	10,006	29,00
M12 X1	9,000	7,00	11,000	100,00	11,00	12,005	35,00
M12 X1,25	9,000	7,00	10,800	100,00	16,00	12,006	41,50
M12 X1,5	9,000	7,00	10,500	100,00	16,00	12,007	31,00
M14 X1	11,000	9,00	13,000	100,00	11,00	14,005	46,00
M14 X1,25	11,000	9,00	12,800	100,00	15,00	14,006	48,00
M14 X1,5	11,000	9,00	12,500	100,00	15,00	14,007	42,00
M16 X1	12,000	9,00	15,000	100,00	11,00	16,005	49,50
M16 X1,5	12,000	9,00	14,500	100,00	15,00	16,007	48,50
M18 X1	14,000	11,00	17,000	110,00	12,00	18,005	65,00
M18 X1,5	14,000	11,00	16,500	110,00	16,00	18,007	64,00
M20 X1,5	16,000	12,00	18,500	125,00	16,00	20,007	61,00
M22 X1,5	18,000	14,50	20,500	125,00	16,00	22,007	85,00
M24 X2	18,000	14,50	22,000	140,00	22,00	24,008	108,00
M26 X1,5	18,000	14,50	24,500	140,00	20,00	26,007	121,00
M27 X1,5	20,000	16,00	25,500	140,00	20,00	27,007	131,00
M27 X2	20,000	16,00	25,000	140,00	28,00	27,008	143,00
M28 X1,5	20,000	16,00	26,500	140,00	20,00	28,007	142,00
M30 X1,5	22,000	18,00	28,500	150,00	20,00	30,007	135,00
M30 X2	22,000	18,00	28,000	150,00	20,00	30,008	145,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

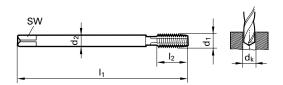
Durchgangsgewinde

Hochleistungs-Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80801

Typ TG 100 T

Norm DIN 374


DIN 2184-1

Schneidstoff HSS-E

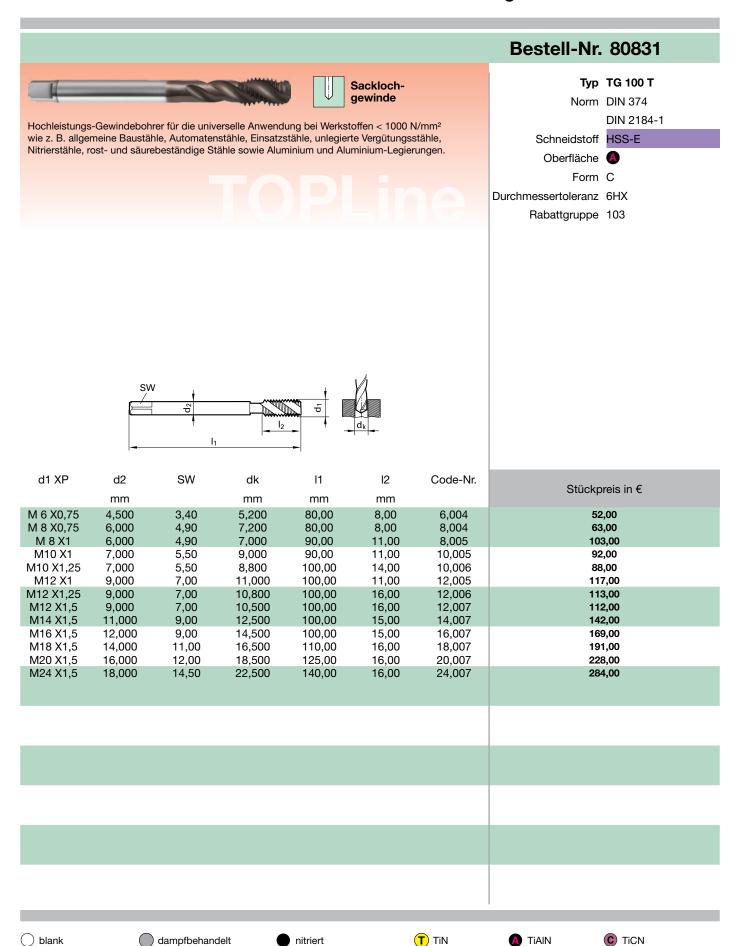
Oberfläche A

Form B Durchmessertoleranz ISO2/6H

Rabattgruppe 103

d1 XP	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Stuckpiels III e
M 3 X0,35	2,200		2,650	56,00	7,00	3,002	61,00
M 4 X0,5	2,800	2,10	3,500	63,00	8,00	4,003	54,00
M 5 X0,5	3,500	2,70	4,500	70,00	10,00	5,003	56,00
M 6 X0,5	4,500	3,40	5,500	80,00	13,00	6,003	58,00
M 6 X0,75	4,500	3,40	5,200	80,00	13,00	6,004	73,00
M 8 X0,75	6,000	4,90	7,200	80,00	14,00	8,004	78,00
M 8 X1	6,000	4,90	7,000	90,00	17,00	8,005	81,00
M10 X1	7,000	5,50	9,000	90,00	17,00	10,005	85,00
M10 X1,25	7,000	5,50	8,800	100,00	20,00	10,006	87,00
M12 X1	9,000	7,00	11,000	100,00	20,00	12,005	95,00
M12 X1,25	9,000	7,00	10,800	100,00	20,00	12,006	95,00
M12 X1,5	9,000	7,00	10,500	100,00	20,00	12,007	92,00
M14 X1,5	11,000	9,00	12,500	100,00	20,00	14,007	115,00
M16 X1,5	12,000	9,00	14,500	100,00	22,00	16,007	132,00
M18 X1,5	14,000	11,00	16,500	110,00	25,00	18,007	175,00
M20 X1,5	16,000	12,00	18,500	125,00	25,00	20,007	227,00
M24 X1,5	18,000	14,50	22,500	140,00	28,00	24,007	272,00
M24 X2	18,000	14,50	22,000	140,00	28,00	24,008	294,00
M36 X2	28,000	22,00	34,000	170,00	30,00	36,008	750,00

O blank


dampfbehandelt

nitriert

TiN

A TIAIN

Bestell-Nr. 80751

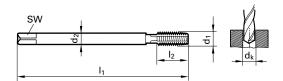
Durchgangs-/ Sacklochgewinde

Gewindebohrer für Gusswerkstoffe wie z. B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle.

Typ TG 100 GG

Norm DIN 374

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

		0111					
d1 XP	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Stuckpiels III &
M 4 X0,5	2,800	2,10	3,500	63,00	8,00	4,003	53,00
M 5 X0,5	3,500	2,70	4,500	70,00	10,00	5,003	52,00
M 6 X0,75	4,500	3,40	5,200	80,00	13,00	6,004	52,00
M 8 X0,75	6,000	4,90	7,200	80,00	14,00	8,004	58,00
M 8 X1	6,000	4,90	7,000	90,00	17,00	8,005	45,00
M10 X1	7,000	5,50	9,000	90,00	17,00	10,005	45,50
M12 X1	9,000	7,00	11,000	100,00	20,00	12,005	54,00
M12 X1,5	9,000	7,00	10,500	100,00	20,00	12,007	51,00
M14 X1,5	11,000	9,00	12,500	100,00	20,00	14,007	65,00
M16 X1,5	12,000	9,00	14,500	100,00	22,00	16,007	74,00
M18 X1,5	14,000	11,00	16,500	110,00	25,00	18,007	89,00
M20 X1,5	16,000	12,00	18,500	125,00	25,00	20,007	110,00
M22 X1,5	18,000	14,50	20,500	125,00	25,00	22,007	112,00
M24 X1,5	18,000	14,50	22,500	140,00	28,00	24,007	133,00
M27 X1,5	20,000	16,00	25,500	140,00	28,00	27,007	193,00
M30 X1,5	22,000	18,00	28,500	150,00	28,00	30,007	232,00
·		,	•	•			

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

Bestell-Nr. 80851

d1 XP

O blank

d2

SW

dampfbehandelt

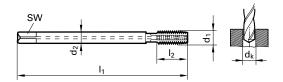
Durchgangs-/ Sacklochgewinde

Gewindebohrer mit Innenkühlung für Gusswerkstoffe wie z.B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle für höchste Standzeiten. Außerdem hervorragend geeignet zur Erzeugung kurzer Späne in allgemeinen und hochfesten Stählen.

Typ TG 300 T

Norm DIN 374

DIN 2184-1


Schneidstoff HSS-E-PM

Oberfläche C

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

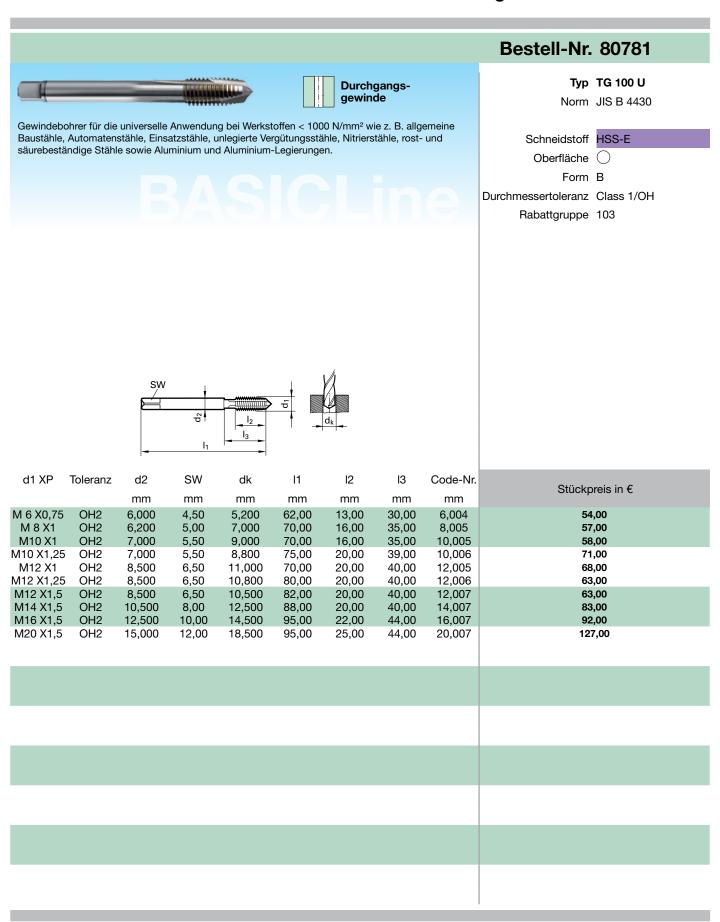
dk

11

nitriert

	mm		mm	mm	mm		Stückpreis in €
M 6 X0,75 M 8 X0,75 M 8 X1 M10 X1 M10 X1,25 M12 X1 M12 X1,25 M12 X1,5	4,500 6,000 6,000 7,000 7,000 9,000 9,000 9,000	3,40 4,90 4,90 5,50 5,50 7,00 7,00 7,00	5,200 7,200 7,000 9,000 8,800 11,000 10,800 10,500	80,00 80,00 90,00 90,00 100,00 100,00 100,00	13,00 14,00 17,00 17,00 20,00 20,00 20,00 20,00	6,004 8,004 8,005 10,005 10,006 12,005 12,006 12,007	83,00 97,00 110,00 118,00 119,00 142,00 129,00 138,00
M14 X1,5 M16 X1,5	11,000 12,000	9,00 9,00	12,500 14,500	100,00 100,00	20,00 22,00	14,007 16,007	133,00 157,00

TiN


12

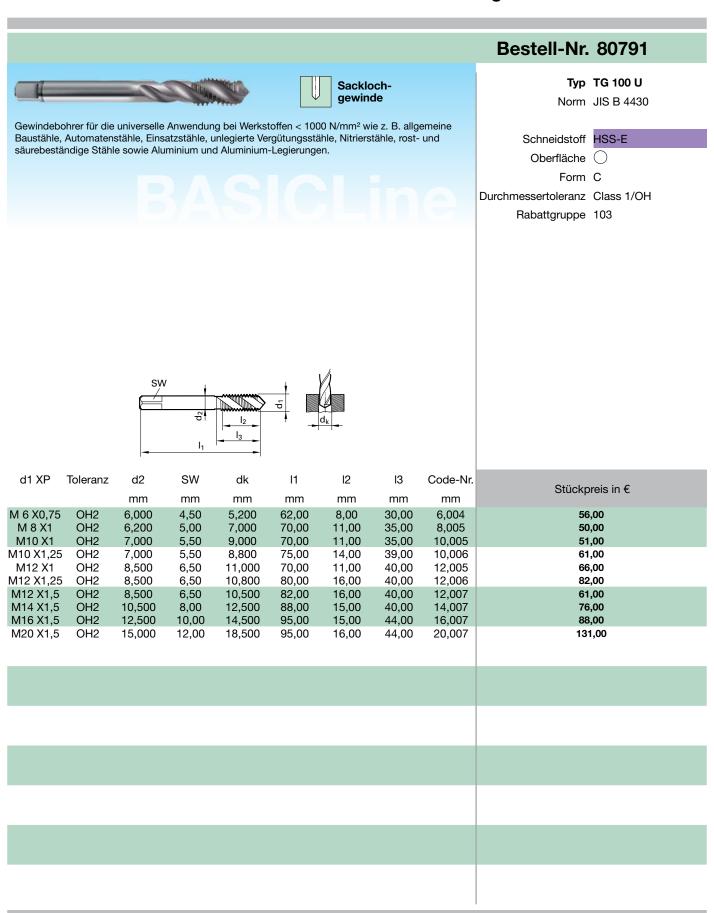
Code-Nr.

C TICN

A TIAIN

TiN

A TIAIN


C TICN

() blank

dampfbehandelt

nitriert

TiN

() blank

dampfbehandelt

nitriert

A TIAIN

Durchgangsgewinde

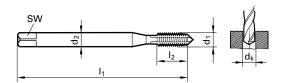
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80702

Typ TG 100 U

Norm ~DIN 371 / ~DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form B

Durchmessertoleranz 2B

Rabattgruppe 156

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdokprois in C
NR. 4 -40	3,500	2,70	2,350	56,00	11,00	2,845	24,00
NR. 6 -32	4,000	3,00	2,850	56,00	12,00	3,505	21,00
NR. 8 -32	4,500	3,40	3,500	63,00	13,00	4,166	21,50
NR.10 -24	6,000	4,90	3,900	70,00	14,00	4,826	29,00
1/4" -20	7,000	5,50	5,100	80,00	16,00	6,350	23,50
5/16" -18	8,000	6,20	6,600	90,00	18,00	7,938	28,50
3/8" -16	10,000	8,00	8,000	100,00	20,00	9,525	37,50
7/16" -14	8,000	6,20	9,400	100,00	22,00	11,113	38,00
1/2" -13	9,000	7,00	10,800	110,00	25,00	12,700	46,00
5/8" -11	12,000	9,00	13,500	110,00	30,00	15,875	58,00
3/4" -10	14,000	11,00	16,500	125,00	33,00	19,050	75,00
7/8" - 9	18,000	14,50	19,500	140,00	35,00	22,225	104,00
1" - 8	18,000	14,50	22,250	160,00	38,00	25,400	143,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

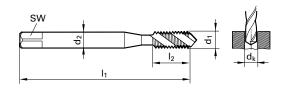
Sacklochgewinde

Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80732

Typ TG 100 U

Norm ~DIN 371 / ~DIN 376


DIN 2184-1

Schneidstoff HSS-E

Oberfläche

Form C Durchmessertoleranz 2B

Rabattgruppe 156

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdokprois in C
NR. 2 -56	2,800	2,10	1,850	45,00	5,00	2,184	34,00
NR. 4 -40	3,500	2,70	2,350	56,00	7,00	2,845	30,50
NR. 6 -32	4,000	3,00	2,850	56,00	8,00	3,505	26,00
NR. 8 -32	4,500	3,40	3,500	63,00	8,00	4,166	28,00
NR.10 -24	6,000	4,90	3,900	70,00	11,00	4,826	27,50
1/4" -20	7,000	5,50	5,100	80,00	13,00	6,350	29,50
5/16" -18	8,000	6,20	6,600	90,00	14,00	7,938	29,00
3/8" -16	10,000	8,00	8,000	100,00	16,00	9,525	31,50
7/16" -14	8,000	6,20	9,400	100,00	18,00	11,113	50,00
1/2" -13	9,000	7,00	10,800	110,00	20,00	12,700	46,00
9/16" -12	11,000	9,00	12,200	110,00	21,00	14,288	73,00
5/8" -11	12,000	9,00	13,500	110,00	24,00	15,875	58,00
3/4" -10	14,000	11,00	16,500	125,00	25,00	19,050	80,00
7/8" - 9	18,000	14,50	19,500	140,00	28,00	22,225	117,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

Durchgangsgewinde

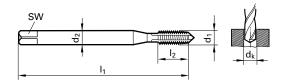
Hochleistungs-Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80802

Typ TG 100 T

Norm ~DIN 371 / ~DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche A

Form B

Durchmessertoleranz 2B

Rabattgruppe 103

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Stuckpiels III €
NR. 4 -40	3,500	2,70	2,350	56,00	11,00	2,845	62,00
NR. 6 -32	4,000	3,00	2,850	56,00	12,00	3,505	59,00
NR. 8 -32	4,500	3,40	3,500	63,00	13,00	4,166	56,00
NR.10 -24	6,000	4,90	3,900	70,00	14,00	4,826	64,00
1/4" -20	7,000	5,50	5,100	80,00	16,00	6,350	58,00
5/16" -18	8,000	6,20	6,600	90,00	18,00	7,938	74,00
3/8" -16	10,000	8,00	8,000	100,00	20,00	9,525	82,00
7/16" -14	8,000	6,20	9,400	100,00	22,00	11,113	103,00
1/2" -13	9,000	7,00	10,800	110,00	25,00	12,700	103,00
9/16" -12	11,000	9,00	12,200	110,00	30,00	14,288	138,00
5/8" -11	12,000	9,00	13,500	110,00	30,00	15,875	128,00
3/4" -10	14,000	11,00	16,500	125,00	33,00	19,050	189,00
7/8" - 9	18,000	14,50	19,500	140,00	35,00	22,225	262,00
1" - 8	18,000	14,50	22,250	160,00	38,00	25,400	296,00

O blank

dampfbehandelt

nitriert

TiN

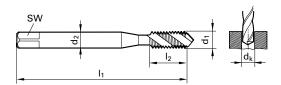
A TIAIN

Sacklochgewinde

Hochleistungs-Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen. Typ TG 100 T

Norm ~DIN 371 / ~DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche A

Form C

Durchmessertoleranz 2B

Rabattgruppe 103

d1 - P	d2	SW	dk	I1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdokprois in C
NR. 4 -40	3,500	2,70	2,350	56,00	7,00	2,845	63,00
NR. 6 -32	4,000	3,00	2,850	56,00	8,00	3,505	57,00
NR. 8 -32	4,500	3,40	3,500	63,00	8,00	4,166	63,00
NR.10 -24	6,000	4,90	3,900	70,00	11,00	4,826	64,00
1/4" -20	7,000	5,50	5,100	80,00	13,00	6,350	63,00
5/16" -18	8,000	6,20	6,600	90,00	14,00	7,938	66,00
3/8" -16	10,000	8,00	8,000	100,00	16,00	9,525	74,00
7/16" -14	8,000	6,20	9,400	100,00	18,00	11,113	99,00
1/2" -13	9,000	7,00	10,800	110,00	20,00	12,700	96,00
9/16" -12	11,000	9,00	12,200	110,00	21,00	14,288	142,00
5/8" -11	12,000	9,00	13,500	110,00	24,00	15,875	136,00
3/4" -10	14,000	11,00	16,500	125,00	25,00	19,050	179,00
7/8" - 9	18,000	14,50	19,500	140,00	28,00	22,225	252,00

TiN C TICN O blank dampfbehandelt A TIAIN nitriert

Bestell-Nr. 80752

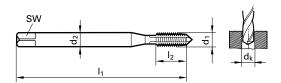
Durchgangs-/ Sacklochgewinde

Gewindebohrer für Gusswerkstoffe wie z. B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle.

Typ TG 100 GG

Norm ~DIN 371 / ~DIN 376

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz 2B

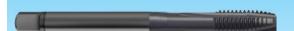
Rabattgruppe 103

d1 - P	d2	SW	dk	I1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdoxpreis III C
NR. 4 -40	3,500	2,70	2,350	56,00	11,00	2,845	39,00
NR. 6 -32	4,000	3,00	2,850	56,00	12,00	3,505	32,50
NR. 8 -32	4,500	3,40	3,500	63,00	13,00	4,166	37,50
NR.10 -24	6,000	4,90	3,900	70,00	14,00	4,826	37,50
1/4" -20	7,000	5,50	5,100	80,00	16,00	6,350	34,00
5/16" -18	8,000	6,20	6,600	90,00	18,00	7,938	39,50
3/8" -16	10,000	8,00	8,000	100,00	20,00	9,525	44,50
7/16" -14	8,000	6,20	9,400	100,00	22,00	11,113	58,00
1/2" -13	9,000	7,00	10,800	110,00	25,00	12,700	61,00
9/16" -12	11,000	9,00	12,200	110,00	30,00	14,288	110,00
5/8" -11	12,000	9,00	13,500	110,00	30,00	15,875	90,00
3/4" -10	14,000	11,00	16,500	125,00	33,00	19,050	119,00
7/8" - 9	18,000	14,50	19,500	140,00	35,00	22,225	146,00
1" - 8	18,000	14,50	22,250	160,00	38,00	25,400	183,00

O blank

dampfbehandelt

nitriert


TiN

A TIAIN

C TiCN

Durchgangsgewinde

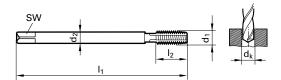
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80703

Typ TG 100 U

Norm ~DIN 374

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form B

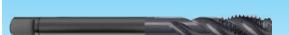
Durchmessertoleranz 2B

Rabattgruppe 156

d1 -	Р	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
		mm		mm	mm	mm		Otdonproid in C
NR. 4	-48	2,200		2,400	56,00	10,00	2,845	33,00
NR. 6	-40	2,500	2,10	2,950	56,00	11,00	3,505	33,00
NR.10	-32	3,500	2,70	4,100	70,00	14,00	4,826	33,00
1/4" -	-28	4,500	3,40	5,500	80,00	16,00	6,350	40,50
3/8" -	-24	7,000	5,50	8,500	90,00	18,00	9,525	44,00
5/8" -	-18	12,000	9,00	14,500	100,00	22,00	15,875	75,00
7/8" -		18,000	14,50	20,400	125,00	25,00	22,225	116,00
1" -	12	18,000	14,50	23,250	140,00	28,00	25,400	120,00

O blank

dampfbehandelt


nitriert

TiN

A TIAIN

C TiCN

Sacklochgewinde

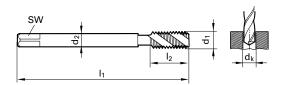
Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

Bestell-Nr. 80733

Typ TG 100 U

Norm ~DIN 374

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz 2B

Rabattgruppe 156

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdokpreis III C
NR. 3 -56	1,800		2,150	50,00	5,00	2,515	36,00
NR. 4 -48	2,200		2,400	56,00	6,00	2,845	37,50
NR. 6 -40	2,500	2,10	2,950	56,00	6,50	3,505	31,00
NR. 8 -36	2,800	2,10	3,500	63,00	7,00	4,166	31,00
NR.10 -32	3,500	2,70	4,100	70,00	8,50	4,826	29,00
1/4" -28	4,500	3,40	5,500	80,00	9,00	6,350	34,00
3/8" -24	7,000	5,50	8,500	90,00	11,00	9,525	37,50
7/16" -20	8,000	6,20	9,900	100,00	13,00	11,113	48,50
1/2" -20	9,000	7,00	11,500	100,00	13,00	12,700	57,00
5/8" -18	12,000	9,00	14,500	100,00	15,00	15,875	76,00
7/8" -14	18,000	14,50	20,400	125,00	19,00	22,225	125,00
1" -12	18,000	14,50	23,250	140,00	22,00	25,400	160,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

Gewindebohrer für UNF-Gewinde

O blank

dampfbehandelt

nitriert

Durchgangsgewinde

Hochleistungs-Gewindebohrer für die universelle Anwendung bei Werkstoffen < 1000 N/mm² wie z. B. allgemeine Baustähle, Automatenstähle, Einsatzstähle, unlegierte Vergütungsstähle, Nitrierstähle, rost- und säurebeständige Stähle sowie Aluminium und Aluminium-Legierungen.

TOPLine

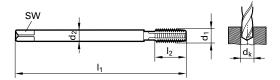
Bestell-Nr. 80803

Typ TG 100 T

Norm ~DIN 374

DIN 2184-1

Schneidstoff HSS-E


100-

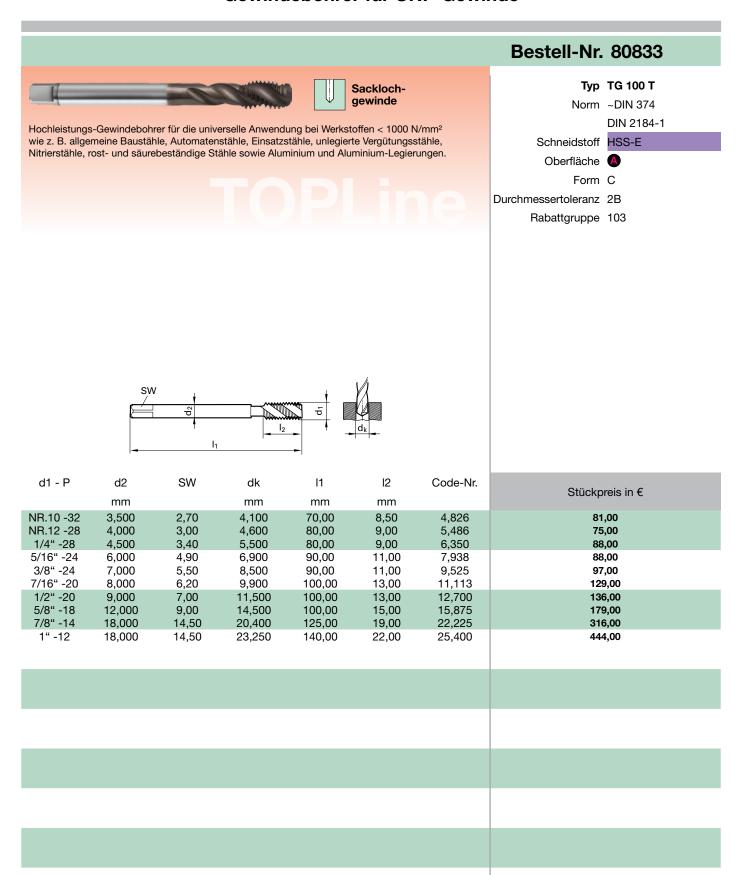
Oberfläche (A)

Form B

Durchmessertoleranz 2B

Rabattgruppe 103

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
NR. 4 -48 NR. 6 -40 NR. 8 -36 NR.10 -32 1/4" -28 5/16" -24 3/8" -24 7/16" -20 5/8" -18 7/8" -14 1" -12	mm 2,200 2,500 2,800 3,500 4,500 6,000 7,000 8,000 12,000 18,000 18,000	2,10 2,10 2,70 3,40 4,90 5,50 6,20 9,00 14,50 14,50	mm 2,400 2,950 3,500 4,100 5,500 6,900 8,500 9,900 14,500 20,400 23,250	mm 56,00 56,00 63,00 70,00 80,00 90,00 90,00 100,00 125,00 140,00	mm 10,00 11,00 12,00 14,00 16,00 18,00 18,00 18,00 22,00 25,00 28,00	2,845 3,505 4,166 4,826 6,350 7,938 9,525 11,113 15,875 22,225 25,400	64,00 61,00 64,00 68,00 87,00 70,00 98,00 106,00 146,00 238,00 344,00


TiN

C TiCN

A TIAIN

Gewindebohrer für UNF-Gewinde

TiN

A TIAIN

C TICN

() blank

dampfbehandelt

Gewindebohrer für UNF-Gewinde

Bestell-Nr. 80753

d1 - P

d2

SW

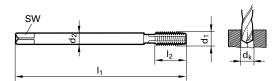
Durchgangs-/ Sacklochgewinde

Gewindebohrer für Gusswerkstoffe wie z. B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle.

Typ TG 100 GG

Norm ~DIN 374

DIN 2184-1


Schneidstoff HSS-E

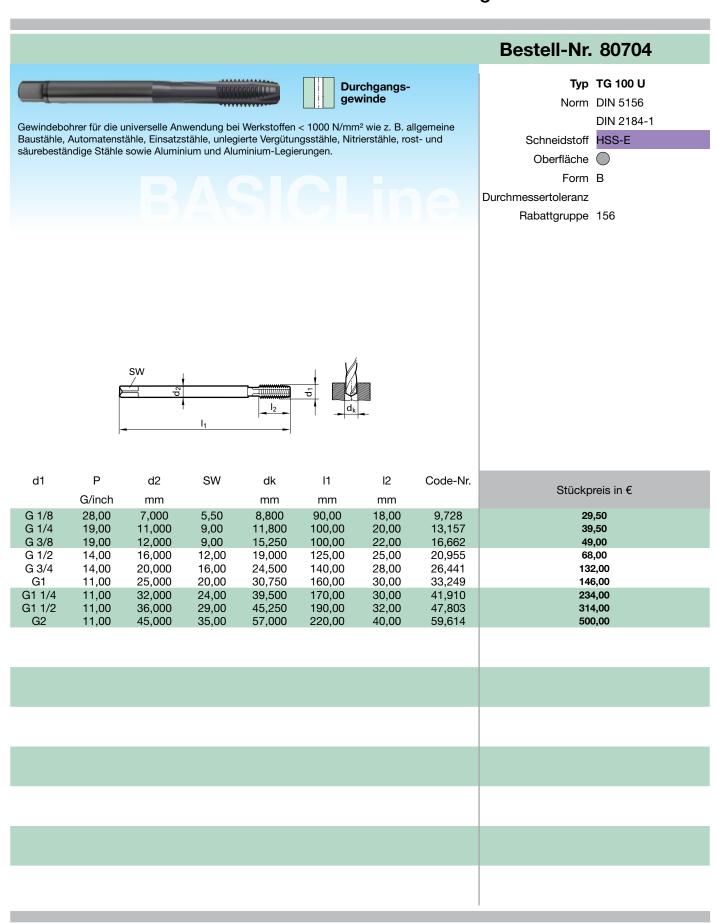
Oberfläche

Form C

Durchmessertoleranz 2B

Rabattgruppe 103

dk

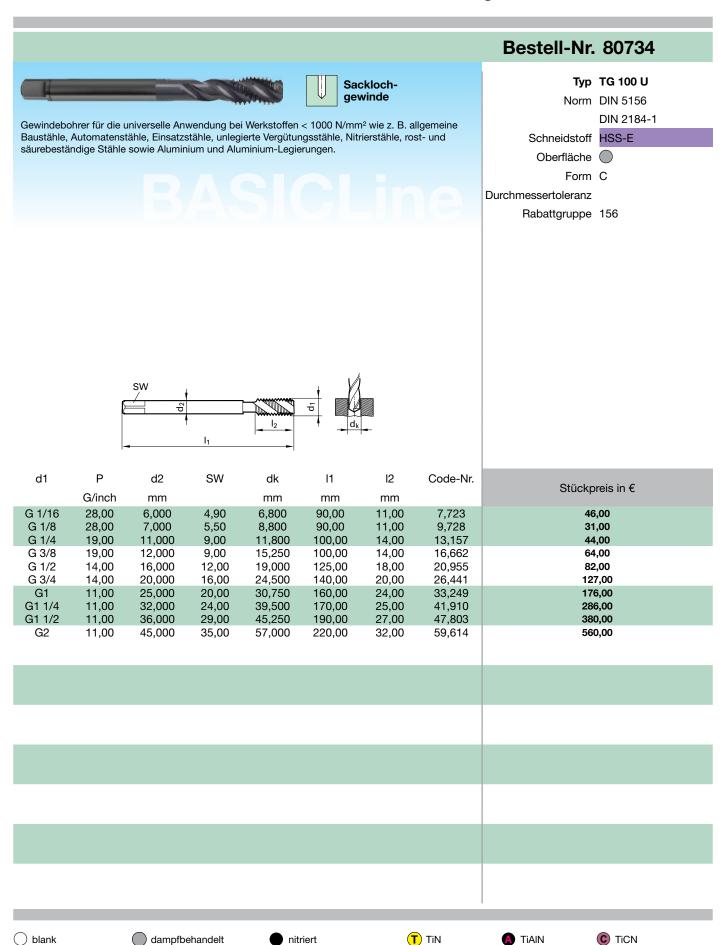

11

	mm		mm	mm	mm		\$	Stückpreis in €	
NR. 4 -48	2,200		2,400	56,00	10,00	2,845		47,50	
NR. 6 -40	2,500	2,10	2,950	56,00	11,00	3,505		40,50	
NR. 8 -36	2,800	2,10	3,500	63,00	12,00	4,166		38,00	
NR.10 -32	3,500	2,70	4,100	70,00	14,00	4,826		40,00	
1/4" -28	4,500	3,40	5,500	80,00	16,00	6,350		47,00	
5/16" -24	6,000	4,90	6,900	90,00	18,00	7,938		45,50	
3/8" -24	7,000	5,50	8,500	90,00	18,00	9,525		49,50	
7/16" -20	8,000	6,20	9,900	100,00	22,00	11,113		61,00	
1/2" -20	9,000	7,00	11,500	100,00	20,00	12,700		61,00	
9/16" -18	11,000	9,00	12,900	100,00	22,00	14,288		98,00	
3/4" -16	14,000	11,00	17,500	110,00	25,00	19,050		105,00	
7/8" -14	18,000	14,50	20,400	125,00	25,00	22,225		159,00	
1" -12	18,000	14,50	23,250	140,00	28,00	25,400		220,00	
			_						
blank		dampfbehand	delt	nitriert	(T TiN	A TIAIN	C TICN	

12

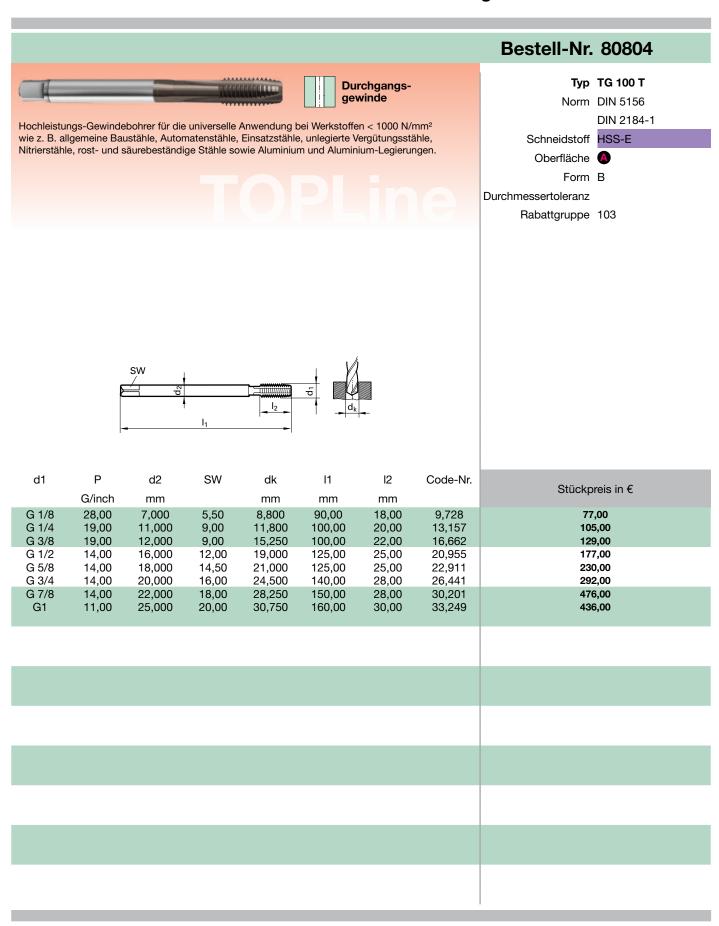
Code-Nr.

TiN


A TIAIN

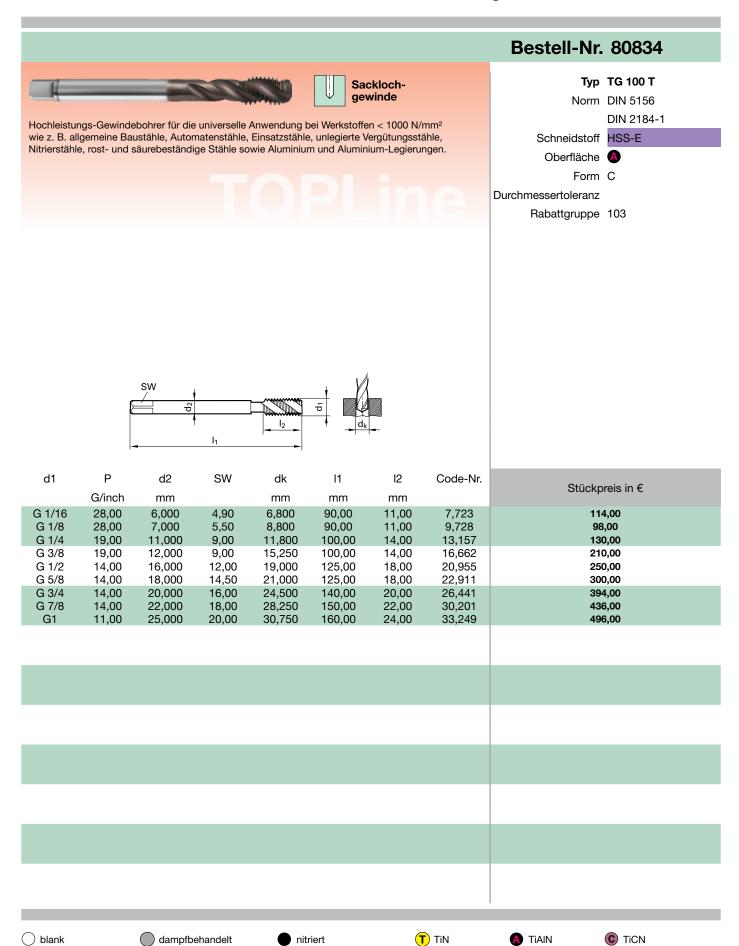
C TICN

() blank


dampfbehandelt

dampfbehandelt

TiN


A TIAIN

C TICN

O blank

dampfbehandelt

Bestell-Nr. 80754

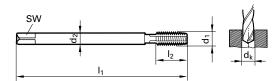
Durchgangs-/ Sacklochgewinde

Gewindebohrer für Gusswerkstoffe wie z. B. Gusseisen, Kugelgraphit- und Temperguss, Gusseisen mit Vermikulargraphit, Aluminium-Gusslegierungen > 7% Si, Magnesium-Legierungen sowie andere kurzspanende NE-Metalle.

Typ TG 100 GG

Norm DIN 5156

DIN 2184-1


Schneidstoff HSS-E

Oberfläche

Form C

Durchmessertoleranz

Rabattgruppe 103

d1	P G/inch	d2 mm	SW	dk mm	l1 mm	l2 mm	Code-Nr.	Stückpreis in €
G 1/16 G 1/8 G 1/4 G 3/8 G 1/2 G 5/8	28,00 28,00 19,00 19,00 14,00	6,000 7,000 11,000 12,000 16,000 18,000	4,90 5,50 9,00 9,00 12,00 14,50	6,800 8,800 11,800 15,250 19,000 21,000	90,00 90,00 100,00 100,00 125,00 125,00	18,00 18,00 20,00 22,00 25,00 25,00	7,723 9,728 13,157 16,662 20,955 22,911	74,00 47,50 65,00 83,00 116,00 144,00
G 3/4 G 7/8 G1 G1 1/8 G1 1/4	14,00 14,00 11,00 11,00 11,00	20,000 22,000 25,000 28,000 32,000	16,00 18,00 20,00 22,00 24,00	24,500 28,250 30,750 35,500 39,500	140,00 150,00 160,00 170,00	28,00 28,00 30,00 30,00 30,00	26,441 30,201 33,249 37,897 41,910	184,00 266,00 242,00 432,00 496,00
G1 3/8 G1 1/2 G1 3/4 G2	11,00 11,00 11,00 11,00	36,000 36,000 40,000 45,000	29,00 29,00 32,00 35,00	41,750 45,250 51,000 57,000	180,00 190,00 190,00 220,00	32,00 32,00 40,00 40,00	44,323 47,803 53,746 59,614	620,00 650,00 880,00 1020,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

Gewindeformer für Metrische ISO-Gewinde

Bestell-Nr. 80900

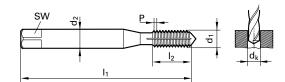
Durchgangs-/ Sacklochgewinde

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

Typ N

Norm ~DIN 371 / ~DIN 376

DIN 2174


Schneidstoff HSS-E

Oberfläche T

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

d1	Р	d2	SW	dk	l1	12	Stückpreis in €
	mm	mm		mm	mm	mm	Otdokprois in C
M 3	0,50	3,500	2,70	2,800	56,00	10,00	49,00
M 3,5	0,60	4,000	3,00	3,250	56,00	12,00	56,00
M 4	0,70	4,500	3,40	3,700	63,00	12,00	51,00
M 5	0,80	6,000	4,90	4,650	70,00	14,00	53,00
M 6	1,00	4,500	3,40	5,550	80,00	16,00	57,00
M 8	1,25	6,000	4,90	7,400	90,00	17,00	70,00
M10	1,50	7,000	5,50	9,300	100,00	20,00	93,00
M12	1,75	9,000	7,00	11,200	110,00	24,00	107,00
M14	2,00	11,000	9,00	13,100	110,00	26,00	164,00
M16	2,00	12,000	9,00	15,100	110,00	26,00	171,00
M18	2,50	14,000	11,00	16,900	125,00	30,00	268,00
M20	2,50	16,000	12,00	18,900	140,00	32,00	284,00
M22	2,50	18,000	14,50	20,900	140,00	27,00	278,00
M24	3,00	18,000	14,50	22,700	160,00	30,00	250,00
M27	3,00	20,000	16,00	25,700	160,00	30,00	346,00
M30	3,50	22,000	18,00	28,500	180,00	35,00	394,00
M33	3,50	25,000	20,00	31,500	180,00	35,00	520,00
M36	4,00	28,000	22,00	34,300	200,00	40,00	570,00
M39	4,00	32,000	24,00	37,300	200,00	40,00	650,00
	,	,	,	,	,,,,	-,	,

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

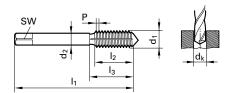
C TICN

Gewindeformer für Metrische ISO-Gewinde

Bestell-Nr. 80980

Durchgangs-/ Sacklochgewinde Typ N

Norm JIS B 4430


Schneidstoff HSS-E

Oberfläche T

Form C

Durchmessertoleranz Class 2/RH

Rabattgruppe 103

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

d1	Р	Toleranz	d2	SW	dk	l1	12	13	Stückpreis in €
	mm		mm	mm	mm	mm	mm	mm	Otdokprois in C
M 4 M 5 M 6	0,70 0,80 1,00	RH6 RH6 RH7	5,000 5,500 6,000	4,00 4,50 4,50	3,700 4,650 5,550	52,00 60,00 62,00	12,00 14,00 16,00	20,00 24,00 29,00	51,00 53,00 62,00
M 8 M10 M12	1,25 1,50 1,75	RH7 RH7 RH8	6,200 7,000 8,500	5,00 5,50 6,50	7,400 9,300 11,200	70,00 75,00 82,00	17,00 20,00 24,00	37,00 41,00 48,00	71,00 91,00 119,00
M16 M20	2,00 2,50	RH10 RH11	12,500 15,000	10,00 12,00	15,100 18,900	95,00 105,00	26,00 32,00	52,00 58,00	162,00 334,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TICN

Gewindeformer für Metrische ISO-Feingewinde

Bestell-Nr. 80901

Durchgangs-/ Sacklochgewinde

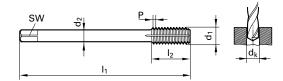
Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

Typ N

Norm ~DIN 374

DIN 2174

Schneidstoff HSS-E



Oberfläche T

Form C

Durchmessertoleranz 6HX

Rabattgruppe 103

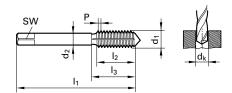
d1 XP	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €	
	mm		mm	mm	mm		Stuckpreis III €	
M 6 X0,75	4,500	3,40	5,650	80,00	13,00	6,004	120,00	
M 8 X0,75	6,000	4,90	7,650	80,00	14,00	8,004	131,00	
M 8 X1	6,000	4,90	7,550	90,00	17,00	8,005	104,00	
M10 X1	7,000	5,50	9,550	90,00	17,00	10,005	107,00	
M10 X1,25 M12 X1	7,000 9,000	5,50 7,00	9,400 11,550	100,00 100,00	20,00 20,00	10,006 12,005	139,00 135,00	
M12 X1,25	9,000	7,00	11,400	100,00	20,00	12,005	143,00	
M12 X1,23	9,000	7,00	11,300	100,00	20,00	12,007	138,00	
M14 X1	11,000	9,00	13,550	100,00	20,00	14,005	179,00	
M14 X1,5	11,000	9,00	13,300	100,00	20,00	14,007	171,00	
M16 X1	12,000	9,00	15,550	100,00	22,00	16,005	230,00	
M16 X1,5	12,000	9,00	15,300	100,00	22,00	16,007	194,00	
M18 X1	14,000	11,00	17,550	110,00	25,00	18,005	268,00	
M18 X1,5	14,000	11,00	17,300	110,00	25,00	18,007	238,00	
M20 X1	16,000	12,00	19,550	125,00	25,00	20,005	312,00	
M20 X1,5	16,000	12,00 14,50	19,300	125,00	25,00	20,007	270,00 346,00	
M22 X1,5 M24 X1,5	18,000 18,000	14,50	21,300 23,300	125,00 140,00	25,00 28,00	22,007 24,007	364,00	
1V124 X 1,5	10,000	14,50	23,300	140,00	20,00	24,007	304,00	
Oblank) dampfbehand	elt	nitriert	(T TiN	A TIAIN © TICN	

Gewindeformer für Metrische ISO-Feingewinde

Bestell-Nr. 80981

Durchgangs-/ Sacklochgewinde Typ N

Norm JIS B 4430


Schneidstoff HSS-E

Oberfläche T

Form C

Durchmessertoleranz Class 2/RH

Rabattgruppe 103

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

d1 XP	Toleranz	d2	SW	dk	l1	12	13	Code-Nr.	Stückpreis in €
		mm	mm	mm	mm	mm	mm	mm	Stuckpreis in €
M 6 X0,75 M 8 X1 M10 X1 M10 X1,25	RH7 RH7	6,000 6,200 7,000 7,000	4,50 5,00 5,50 5,50	5,650 7,550 9,550 9,400	62,00 70,00 70,00 75,00	13,00 16,00 16,00 20,00	30,00 35,00 35,00 39,00	6,004 8,005 10,005 10,006	61,00 73,00 79,00 81,00
M12 X1 M12 X1,25 M12 X1,25	RH7	8,500 8,500 8,500	6,50 6,50 6,50	11,550 11,400 11,300	70,00 70,00 80,00 82,00	20,00 20,00 20,00 20,00	40,00 40,00 40,00	12,005 12,006 12,007	135,00 135,00 135,00
M14 X1,5 M16 X1,5 M20 X1,5	RH9 RH9 RH10	10,500 12,500 15,000	8,00 10,00 12,00	13,300 15,300 19,300	88,00 95,00 95,00	20,00 22,00 25,00	40,00 44,00 44,00	14,007 16,007 20,007	148,00 168,00 240,00
W.20 X1,0	11110	10,000	12,00	10,000	00,00	20,00	11,00	20,007	_1.0,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TICN

Gewindeformer für UNC-Gewinde

Bestell-Nr. 80902

Durchgangs-/ Sacklochgewinde

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

Typ N

Norm ~DIN 371 / ~DIN 376

DIN 2184-1

Schneidstoff HSS-E



Oberfläche T

Form C

Durchmessertoleranz 2BX

Rabattgruppe 103

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		·
NR. 4 -40	3,500	2,70	2,550	56,00	11,00	2,845	58,00
NR. 5 -40	3,500	2,70	2,900	56,00	11,00	3,175	54,00
NR. 6 -32	4,000	3,00	3,150	56,00	12,00	3,505	62,00
NR. 8 -32	4,500	3,40	3,800	63,00	13,00	4,166	70,00
NR.10 -24	6,000	4,90	4,350	70,00	14,00	4,826	97,00
NR.12 -24	6,000	4,90	5,000	80,00	16,00	5,486	100,00
1/4" -20	7,000	5,50	5,750	80,00	16,00	6,350	88,00
5/16" -18	8,000	6,20	7,300	90,00	18,00	7,938	110,00
3/8" -16	10,000	8,00	8,800	100,00	20,00	9,525	125,00
7/16" -14	8,000	6,20	10,300	100,00	22,00	11,113	155,00
1/2" -13	9,000	7,00	11,800	110,00	25,00	12,700	156,00
9/16" -12	11,000	9,00	13,300	110,00	30,00	14,288	250,00
5/8" -11	12,000	9,00	14,800	110,00	30,00	15,875	224,00
3/4" -10	14,000	11,00	17,900	125,00	33,00	19,050	326,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TiCN

Gewindeformer für UNF-Gewinde

Bestell-Nr. 80903

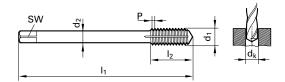
Durchgangs-/ Sacklochgewinde

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

Typ N

Norm ~DIN 371 / ~DIN 374

DIN 2184-1


Schneidstoff HSS-E

100-1

Oberfläche **T**Form C

Durchmessertoleranz 2BX

Rabattgruppe 103

d1 - P	d2	SW	dk	l1	12	Code-Nr.	Stückpreis in €
	mm		mm	mm	mm		Otdorproid in C
NR. 4 -48	3,500	2,70	2,600	56,00	10,00	2,845	62,00
NR. 5 -44	3,500	2,70	2,900	56,00	10,00	3,175	58,00
NR. 6 -40	4,000	3,00	3,200	56,00	11,00	3,505	64,00
NR. 8 -36	4,500	3,40	3,850	63,00	12,00	4,166	73,00
NR.10 -32	6,000	4,90	4,450	70,00	14,00	4,826	98,00
NR.12 -28	6,000	4,90	5,100	80,00	16,00	5,486	113,00
1/4" -28	7,000	5,50	5,950	80,00	16,00	6,350	116,00
5/16" -24	8,000	6,20	7,450	90,00	18,00	7,938	125,00
3/8" -24	10,000	8,00	9,050	90,00	18,00	9,525	125,00
7/16" -20	8,000	6,20	10,550	100,00	22,00	11,113	156,00
1/2" -20	9,000	7,00	12,100	100,00	20,00	12,700	179,00
9/16" -18	11,000	9,00	13,650	100,00	22,00	14,288	226,00
5/8" -18	12,000	9,00	15,250	100,00	22,00	15,875	240,00
3/4" -16	14,000	11,00	18,350	110,00	25,00	19,050	286,00

O blank

dampfbehandelt

nitriert

TiN

A TIAIN

C TICN

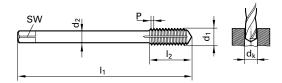
Durchgangs-/ Sacklochgewinde

Für die Bearbeitung von Werkstoffen mit guten Kaltverformungseigenschaften und mindestens 10% Dehnung, wie z.B. unlegierte Stähle bis 1000 N/mm², rost-, säure- und hitzebeständige Stähle und langspanende Aluminium-Legierungen.

Typ N

Norm DIN 2189

DIN 2184-1


Schneidstoff HSS-E

Oberfläche T

Form C

Durchmessertoleranz

Rabattgruppe 103

d1	Р	d2	SW	dk	l1	12	Code-Nr.	S	tückpreis in €	
	G/inch	mm		mm	mm	mm			raditproid in C	
G 1/16	28,00	6,000	4,90	7,300	90,00	18,00	7,723		99,00	
G 1/8	28,00	7,000	5,50	9,300	90,00	18,00	9,728		133,00	
G 1/4 G 3/8	19,00 19,00	11,000 12,000	9,00 9,00	12,500 16,000	100,00 100,00	20,00 22,00	13,157 16,662		163,00 228,00	
G 1/2	14,00	16,000	12,00	20,000	125,00	25,00	20,955		296,00	
G 3/4	14,00	20,000	16,00	25,500	140,00	28,00	26,441		314,00	
_						_		_		
O blank		dampfbe	handelt	nitr	riert	(1	TiN	A TIAIN	C TICN	

Normenzuordnung zur DIN 2184

Die Norm DIN 2184 legt die Hauptmaße für Gewindebohrer und -former fest, die für eine Gewindeherstellung mit Nenndurchmessern $d_1 > 0.9 \dots 113 \text{ mm bestimmt}$ sind. Teil 1 ist der Generalplan der Maße für die lange Werkzeugausführung, Teil 2 der Generalplan für die kurze Werkzeugausführung. Diese Generalpläne enthalten

entsprechend der Nenndurchmesserbereiche und in Abhängigkeit von Gewinde-Steigung, Anzahl der Gänge und dem Verhältnis Gesamtlänge: max. Gewindelänge die Schaftausführungen "Verstärkter Schaft" und "Abgesetzter Schaft". Eine detaillierte Darstellung der Schaftausführungen und Norm-Merkmale finden Sie auf der folgenden Seite.

Gewindeb	Gewindebohrer										
	DIN 2	184-1	1	DIN 2184-2							
Gev	ninen- ohrer, I	ang	Hand- und kurze Maschinen-Gewindebohrer								
	Metrische ISO-Regelgewinde ISO-Feingewinde				ische elgewinde	Metrische ISO-Feingewinde					
	DIN 371 DIN 371 DIN 376 DIN 374			DIN	352	DIN	2181				
UNC-/BSW*- Gewinde			<u> </u>	UNC-/ BSW- Gewinde	UNF- Gewinde	G- Gewinde	Pg- Gewinde				

~DIN

352

~DIN

2181

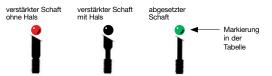
DIN

5157

40 432

DIN 5156

Gewindeformer										
DIN 2184-1										
DIN 2174 DIN 2184-1										
Metrische ISO-Regelgewinde	Metrische ISO-Feingewinde	UNC- Gewinde	UNF- Gewinde	G- Gewinde						
bisher DIN 371 DIN 376	bisher DIN 371 DIN 374	bisher ~DIN 371 ~DIN 376	bisher ~DIN 371 ~DIN 374	bisher DIN 5156						


Gewindewerkzeug-Schaftausführungen

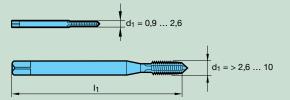
~DIN 371

~DIN 374

~DIN 371

~DIN 376

Gewindeart	D	IN	enthalten		Nenndurchmes	ser-Bereiche mm	
	Gewindebohrer	Gewindeformer	in den Generalplänen	0,9 2,6	>2,6 6,35	>6,35 10,0	>10,0
M/MJ	DIN	371	2184-1	•	•	•	_
metrisches	DIN	376	2184-1	0	•	•	•
ISO-Regelgewinde	DIN	352	2184- 2	•	•	•	•
	DIN	2174	2184-1	•	•	•	•
MF/MJF	DIN	371	2184-1	•	•	•	_
metrisches	DIN	374	2184-1	_	•	•	•
ISO-Feingewinde	DIN	2181	2184- 2	•	•	•	•
	DIN	2174	2184-1	•	•	•	•
UNC-/UNJC-/BSW-	~DIN	371	2184-1	•	•	•	_
Gewinde	~DIN	376	2184-1	•	•	•	•
	~DIN	352	2184- 2	•	•	•	•
UNF-/UNJF-	~DIN	371	2184-1	•	•	•	_
Gewinde	~DIN	374	2184-1	_	•	•	•
	~DIN	2181	2184- 2	•	•	•	•
G-	DIN	5156	2184-1	_	•	•	•
Gewinde	DIN	5157	2184- 2	-	•	•	•
Pg-Gewinde	DIN	40 432	2184- 2	_	_	_	•


Generalplan für Werkzeuge nach DIN 2184 Teil 1

Nenn-Ø mm		Schaftausführung mm		Steigung mm	Gesamtlänge mm	max. Gewindelänge
., ,		ter Schaft	abgesetzter Schaft			mm
überbis	Ø	Nutzlänge	Ø	-0.00	40	F. F.
0,91,20	2,5	5,5	-	≤0,20 ≤0,35	40 40	5,5 7,0
1,201,40 1,401,80	2,5 2,5	7,0 8,0	-	≤0,35 ≤0,35	40	8,0
1,802,00	2,8	8,0	-	≤0,35 ≤0,40	45	8,0
2,002,30	2,8	9,0	_	≤0,40 ≤0,40	45	9,0
2,302,60	2,8	9,0	_	≤0,50	50	9,0
2,603,20	3,5	18	2,2	≤0,45	56	8,0
2,603,20	3,5	18	2,2	0,500,60	56	11,0
3,203,55	4,0	20	2,5	≤0,50	56	9,0
3,203,55	4,0	20	2,5	0,600,80	56	12,0
3,554,20	4,5	21	2,8	≤0,50	63	10,0
3,554,20	4,5	21	2,8	0,600,80	63	13,0
4,204,55	6,0	25	3,5	≤0,60	70	12,0
4,204,55	6,0	25	3,5	0,700,80	70	16,0
4,555,00	6,0	25	3,5	≤0,75	70	12,0
4,555,00	6,0	25	3,5	0,801,00	70	16,0
5,005,60	6,0	30	4,0	≤0,75	80	12,0
5,005,60	6,0	30	4,0	0,801,00	80	17,0
5,606,10	6,0	30	4,5	≤0,80	80	14,0
5,606,10	6,0	30	4,5	1,0	80	19,0
6,106,40	7,0	30	4,5	≤0,80	80	14,0
6,106,40	7,0	30	4,5	1,001,25	80	19,0
6,407,00	7,0	30	5,5	≤0,80	80	14,0
6,407,00	7,0	30	5,5	1,001,25	80	19,0
7,008,00	8,0	30	6,0	≤0,80	80	18,0
7,008,00	8,0	35	6,0	1,001,50	90	22,0
8,009,00	9,0	30	7,0	≤0,80	90	18,0
8,009,00	9,0	35	7,0	1,001,50	90	22,0
9,0010,15	10,0	35	7,0	≤1,00	90	20,0
9,0010,15	10,0	39	7,0	1,251,50	100	24,0
10,1511,15	-	_	8,0	0,251,00	90	20,0
10,1511,15	-	-	8,0	1,251,75	100	24,0
11,1512,80	-	_	9,0	0,251,50	100	22,0
11,1512,80	-	_	9,0	1,752,00	110	28,0
12,8014,35	-	_	11,0	0,251,50	100	22,0
12,8014,35	_	_	11,0	1,752,00	110	30,0
14,3517,10	-	-	12,0	0,251,50	100	22,0
14,3517,10	-	_	12,0	1,752,00	110	32,0
17,1019,10	-	_	14,0	0,251,50	110	25,0
17,1019,10	-	_	14,0	1,752,50	125	34,0
19,1021,15	-	-	16,0	0,251,75	125	25,0
19,1021,15	-	-	16,0	2,002,50	140	34,0
21,1523,00	-	-	18,0	0,251,75	125	25,0
21,1523,00	-	-	18,0	2,002,50	140	34,0
23,0026,00	-	-	18,0	0,252,00	140	28,0
23,0026,00	_	-	18,0	2,503,00	160	38,0
26,0028,15	-	-	20,0	0,252,00	140	28,0
26,0028,15		-	20,0	2,503,00	160	38,0
28,1530,20	-	-	22,0	0,252,00	150	28,0
28,1530,20	_	-	22,0	2,503,50	180	45,0
30,2032,00	-	-	22,0	0,252,00	150	28,0
30,2032,00	_	-	22,0	2,503,50	180	50,0
32,0033,30	-	-	25,0	0,252,00	160	30,0
32,0033,30	-	-	25,0	2,503,50	180	50,0
33,3038,20		_	28,0	0,252,00	170	30,0
33,3038,20	_	-	28,0	2,504,50	200	56,0
38,2042,00	-	-	32,0	0,252,00	170	30,0
38,2042,00	_	-	32,0	2,504,50	200	60,0
42,0045,00	-	-	36,0	0,252,00	180	32,0
42,0045,00	_	-	36,0	2,503,00	200	50,0
42,0045,00	_	_	36,0	3,505,00	220	69,0
45,0050,00	-	-	36,0	0,252,00	190	82,0
45,0050,00 45,0050,00	-		36,0	2,503,00	225	50,0
	_	_	36,0	3,505,00	250	70,0

DIN 371

im Generalplan DIN 2184-1

Norm für Maschinen-Gewindebohrer für Metrisches ISO-Regelgewinde und Metrisches ISO-Feingewinde mit verstärktem Schaft. Lange Ausführung.

Schaftausführung entspr. nebenstehender Durchmesserbereiche

DIN 376

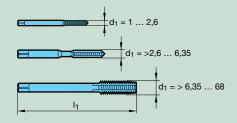
im Generalplan DIN 2184-1

Norm für Maschinen-Gewindebohrer für Metrisches ISO-Regelgewinde mit abgesetztem Schaft (Überlaufbohrer). Lange

Ausführung. Durchmesserbereich $d_1 = 1,6 \dots 68 \text{ mm}$ ($\leq \emptyset$ M3, Schaftausführung ohne Vierkant)

DIN 374

im Generalplan DIN 2184-1

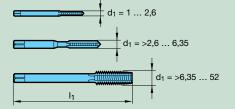


Norm für Maschinen-Gewindebohrer für Metrisches ISO-Feingewinde mit abgesetztem Schaft (Überlaufbohrer). Lange

Ausführung. Durchmesserbereich $d_1 = 3 \dots 52 \text{ mm}$

DIN 352

im Generalplan DIN 2184-2

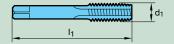

Norm für Hand- und Maschinen-Gewindebohrer für Metrisches

ISO-Regelgewinde. Kurze Ausführung. Schaftausführung entspr. nebenstehender Durchmesserbereiche

im Generalplan DIN 2184-2

Norm für Hand- und Maschinen-Gewindebohrer für Metrisches ISO-Feingewinde. Kurze Ausführung. Schaftausführung entspr. nebenstehender Durchmesserbereiche (mm).

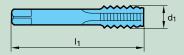
DIN 5156


im Generalplan DIN 2184-1

Norm für Maschinen-Gewindebohrer für G-Rohrgewinde nach DIN ISO 228 und für Whitworth-Rohrgewinde nach DIN 2999. Lange Ausführung. Durchmesserbereiche: G-Gewinde G $^1/_{16}^{\prime\prime}$... G $^4^{\prime\prime}$ Whitworth-Gewinde Rp $^1/_{16}^{\prime\prime}$... Rp $^4^{\prime\prime}$

DIN 5157

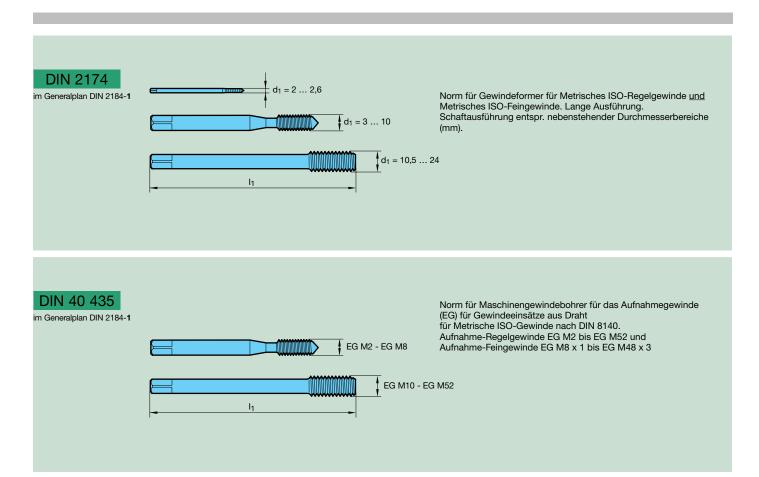
im Generalplan DIN 2184-2


Norm für Maschinen-Gewindebohrer für G-Rohrgewinde nach DIN ISO 228 und für Whitworth-Rohrgewinde nach DIN EN 10 226-1. Kurze Ausführung. Durchmesserbereiche:

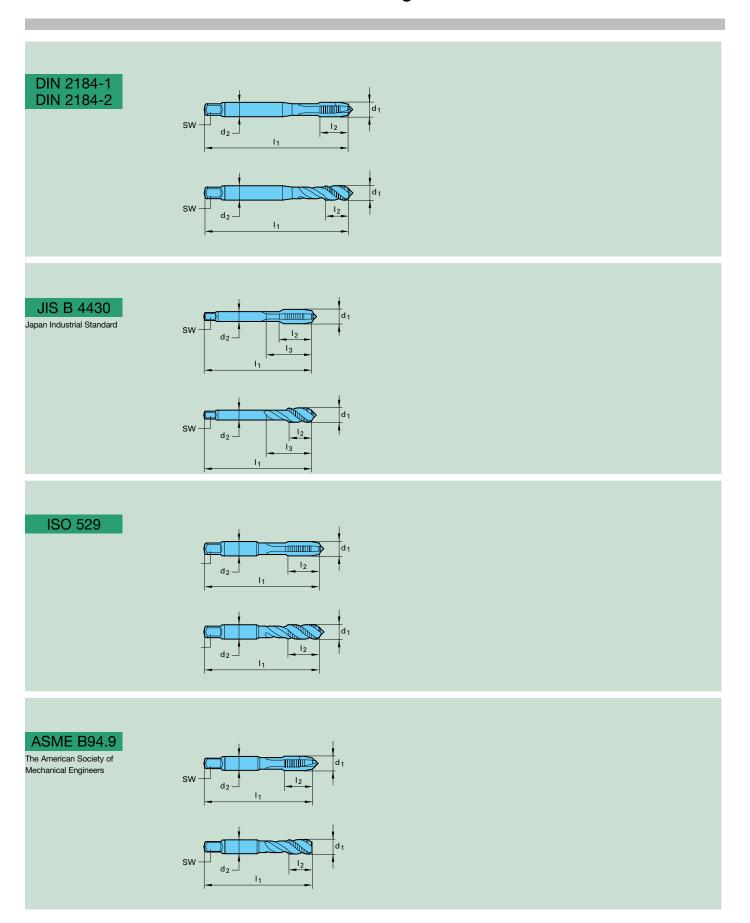
G-Gewinde G ¹/₁₆" ... G 4"

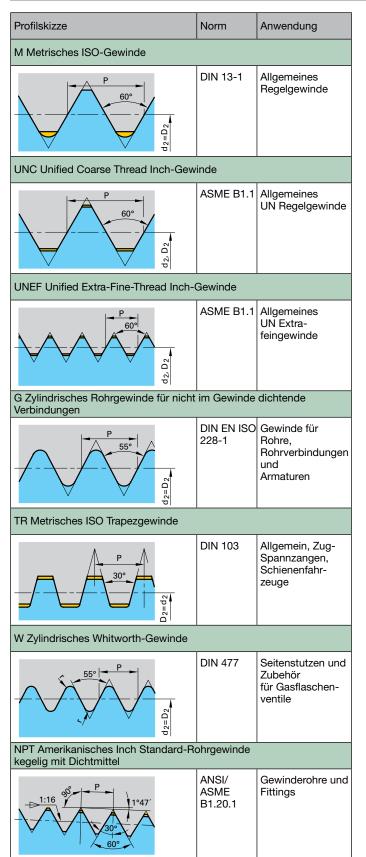
Whitworth-Gewinde Rp ¹/₁₆"... Rp 4"

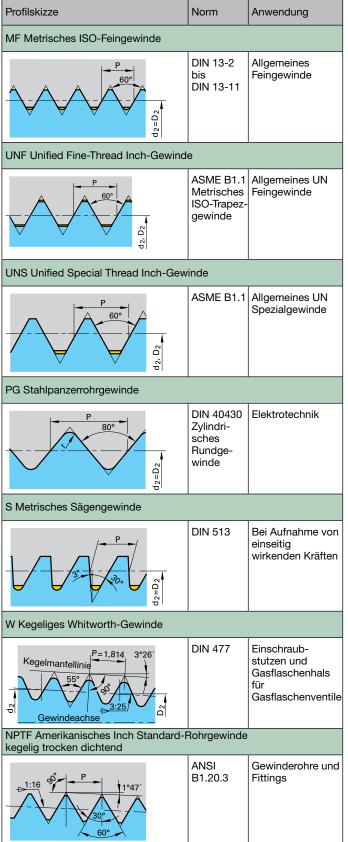
DIN 40 432

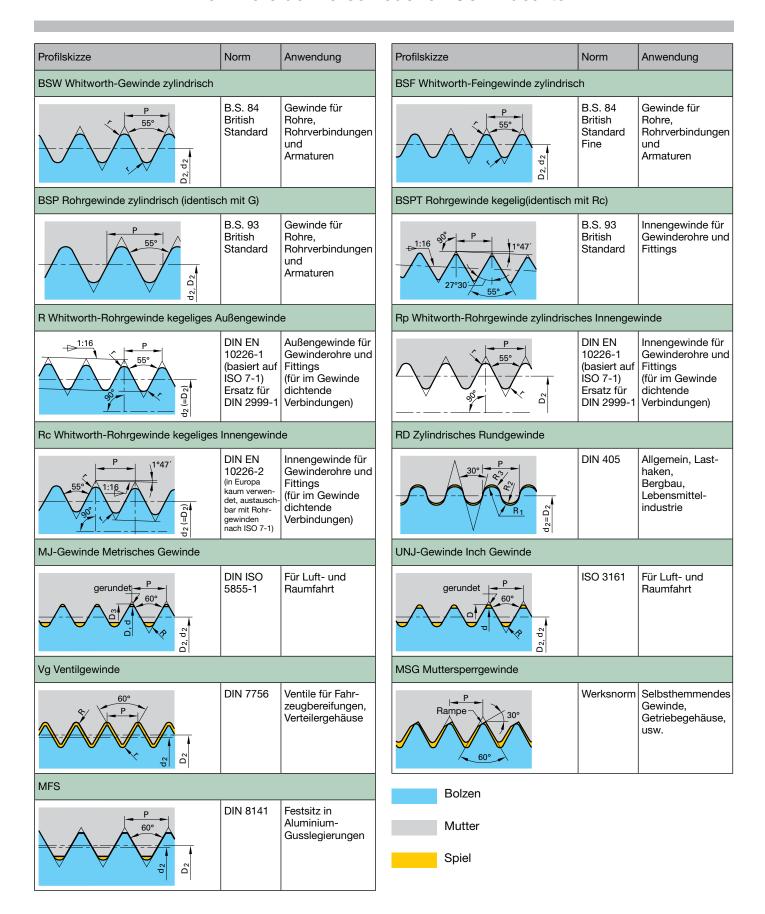

im Generalplan DIN 2184-2

Norm für Maschinen-Gewindebohrer für Stahlpanzerrohr-Gewinde nach DIN 40 430. Kurze Ausführung. Durchmesserbereich:


Pg 7 (12,5 mm) ... Pg 48 (59,3 mm) Wird ersetzt durch DIN 374 ISO 3 6G.




Normen-Vergleich


Merkmale der verschiedenen Gewindearten

Merkmale der verschiedenen Gewindearten

Kernlochdurchmesser für das Gewindeschneiden

P.4.	aduia a la	- ICO D-					N4 - 4	wia aha 100) Fain							0.0	-1-	
IVI	etrisch	e ISO-Re DIN 13	~ ~	nae			Met	rische ISC DIN)-⊦einge N 13	ewinde						IC-Gewin		
Nenn- Ø	Stei- gung P	Kern- loch- (Bohr-)Ø	Mutterg		Nenn- Stei- Ø x gung P	Kern- loch- (Bohr-)Ø	Mutter	rn-Ø gewinde SH	Nenn- Ø	Stei- x gung P		Mutterg	n-Ø gewinde H	Nenn- Ø	Gang	Kern- loch- (Bohr-)Ø	Mut	
	mm	DIN 336 mm	min. mm	max. mm	mm	DIN 336 mm	min. mm	max. mm		mm	DIN 336 mm	min. mm	max. mm		pro inch	DIN 336 mm	min. mm	max. mm
M 1	0,25	0,75	0,729	0,785	M 2,5 x 0,35	2,15	2,121	2,221	M 22	x 1,00	21,00	20,917	21,153	Nr. 1	- 64	1,55	1,425	1,580
M 1,1	0,25	0,85	0,829	0,885	M 3,0 x 0,35	2,65	2,621	2,721	M 22	x 1,50	20,50	20,376	20,676	Nr. 2	- 56	1,85	1,694	1,872
M 1,2	0,25	0,95	0,929	0,985	M 3,5 x 0,35	3,15	3,121	3,221	M 22	x 2,00	20,00	19,835	20,210	Nr. 3	- 48	2,10	1,941	2,146
M 1,4	0,30	1,10	1,075	1,142	M 4,0 x 0,50	3,50	3,459	3,599	M 24	x 1,00	23,00	22,917	23,153	Nr. 4	- 40	2,35	2,157	2,385
M 1,6	0,35	1,25	1,221	1,321	M 4,5 x 0,50	4,00	3,959	4,099	M 24	x 1,50	22,50	22,376	22,676	Nr. 5	- 40	2,65	2,487	2,698
M 1,8	0,35	1,45	1,421	1,521	M 5,0 x 0,50	4,50	4,459	4,599	M 24	x 2,00	22,00	21,835	22,210	Nr. 6	- 32	2,85	2,642	2,896
M 2	0,40	1,60	1,567	1,679	M 5,5 x 0,50	5,00	4,959	5,099	M 25	x 1,00	24,00	23,917	24,153	Nr. 8	- 32	3,50	3,302	3,531
M 2,2	0,45	1,75	1,713	1,838	M 6,0 x 0,75	5,20	5,188	5,378	M 25	x 1,50	23,50	23,376	23,676	Nr. 10	- 24	3,90	3,683	3,937
M 2,5	0,45	2,05	2,013	2,138	M 7,0 x 0,75	6,20	6,188	6,378	M 25	x 2,00	23,00	22,835	23,210	Nr. 12	- 24	4,50	4,343	4,597
М 3	0,50	2,50	2,459	2,599	M 8,0 x 0,50	7,50	7,459	7,599	M 27	x 1,00	26,00	25,917	26,153	1/4	- 20	5,10	4,978	5,258
M 3,5	0,60	2,90	2,850	3,010	M 8,0 x 0,75	7,20	7,188	7,378	M 27	x 1,50	25,50	25,376	25,676	⁵ /16		6,60	6,401	6,731
M 4	0,70	3,30	3,242	3,422	M 8,0 x 1,00	7,00	6,917	7,153	M 27	x 2,00	25,00	24,835	25,210	3/8	- 16	8,00	7,798	8,153
M 4,5	0,75	3,70	3,688	3,878	M 9,0 x 0,75	8,20	8,188	8,378	M 28	x 1,00	27,00	26,917	27,153	7/16	- 14	9,40	9,144	9,550
M 5	0,80	4,20	4,134	4,334	M 9,0 x 1,00	8,00	7,917	8,153	M 28	x 1,50	26,50	26,376	26,676	1/2	- 13	10,80	10,592	11,024
M 6	1,00	5,00	4,917	5,153	M 10 x 0,75	9,20	9,188	9,378	M 28	x 2,00	26,00	25,835	26,210	9/16	- 12	12,20	11,989	12,446
M 7	1,00	6,00	5,917	6,153	M 10 x 1,00	9,00	8,917	9,153	M 30	x 1,00	29,00	28,917	29,153	5/8		13,50	13,386	13,868
M 8	1,25	6,80	6,647	6,912	M 10 x 1,25	8,80	8,647	8,912	M 30	x 1,50	28,50	28,376	28,676	3/4	- 10	16,50	16,307	16,840
M 9	1,25	7,80	7,647	7,912	M 11 x 0,75	10,20	10,188	10,378	M 30	x 2,00	28,00	27,835	28,210	7/8	- 9	19,50	19,177	19,761
M 10	1,50	8,50	8,376	8,676	M 11 x 1,00	10,00	9,917	10,153	M 30	x 3,00	27,00	26,752	27,252	1	- 8	22,25	21,971	22,606
M 11	1,50	9,50	9,376	9,676	M 12 x 1,00	11,00	10,917	11,153	M 32	x 1,50	30,50	30,376	30,676	1 ¹ / ₈	- 7	25,00	24,638	25,349
M 12	1,75	10,20	10,106	10,441	M 12 x 1,25		10,647	10,912		x 2,00	30,00	29,835	30,210	1 1/4		28,00	27,813	28,524
M 14	2,00	12,00	11,835	12,210	M 12 x 1,50	10,50	10,376	10,676	M 33	x 1,50	31,50	31,376	31,676	1 3/8	- 6	30,75	30,353	31,115
M 16	2,00	14,00	13,835	14,210	M 14 x 1,00	-	12,917	13,153	M 33	x 2,00	31,00	30,835	31,210	1 ¹ / ₂	- 6	34,00	33,528	34,290
M 18	2,50	15,50	15,294	15,744	M 14 x 1,25		12,647	12,912	M 33	x 3,00	30,00	29,752	30,252	1 3/4	- 5	39,50	38,938	39,802
M 20	2,50	17,50	17,294	17,744	M 14 x 1,50	12,50	12,376	12,676	M 35	x 1,50	33,50	33,376	33,676	2	- 4,5	45,00	44,679	45,593
M 22	2,50	19,50	19,294	,	M 15 x 1,00	14,00	13,917	14,153	M 36	x 1,50	34,50	34,376	34,676					
M 24	3,00	21,00	20,752	21,252	M 15 x 1,50	13,50	13,376	13,676										
M 27	3,00	24,00	23,752	,	M 16 x 1,00	15,00	14,917	15,153	* M 1,1	bis M 1,4	4 Kern-Ø M	uttergewin	ide 5H					
M 30	3,50	26,50	26,211	26,771	M 16 x 1,25	14,80	14,647	14,912										
M 33	3,50	29,50	29,211	29,771	M 16 x 1,50		14,376	14,676										
M 36	4,00	32,00	'	32,270	M 17 x 1,00	16,00	15,917	16,153										
M 39	4,00	35,00	34,670	35,270	M 17 x 1,50	15,50	15,376	15,676										
M 42	4,50	37,50	37,129	37,799	M 18 x 1,00		16,917	17,153										
M 45	4,50	40,50	40,129	40,799	M 18 x 1,50		,	16,676										
						40.00	10017	10 150										

			J-Gewinde N ISO 5855		
Nenn- Ø	х	Stei- gung P	Kern- loch- (Bohr-) Ø	Mu	n-Ø tter- de 5H*
		mm	mm	min. mm	max. mm
MJ 3	Х	0,50	2,60	2,513	2,653
MJ 4	Х	0,70	3,40	3,318	3,498
MJ 5	Х	0,80	4,30	4,221	4,421
MJ 6	Х	0,50	5,55	5,513	5,625
MJ 6	Х	0,75	5,35	5,269	5,419
MJ 6	Х	1,00	5,10	5,026	5,216
MJ 8	Х	0,50	7,55	7,513	7,625
MJ 8	Х	0,75	7,35	7,269	7,419
MJ 8	Х	1,00	7,10	7,026	7,216
MJ 8	Х	1,25	6,90	6,782	6,994
MJ 10	Х	1,00	9,10	9,026	9,216
MJ 10	Х	1,25	8,90	8,782	8,994
MJ 10	Х	1,50	8,60	8,539	8,775
MJ 12	Х	1,75	10,40	10,295	10,560
MJ 16	х	2,00	14,20	14,051	14,351

43,00 42,587 43,297 M 20 x 1,00 **19,00** 18,917 19,153

47,00 46,587 47,297 M 20 x 1,50 **18,50** 18,376

M 56 5,50 **50,50** 50,046 50,796 M 20 x 2,00 **18,00** 17,835

			JC-Gewind ISO 3161	е					JF-Gewind ISO 3161	е	
Nenn- Ø		Gang	Kern- loch- (Bohr-) Ø	Keri Mut gewin	ter-	Nenn- Ø		Gang	Kern- loch- (Bohr-) Ø	Mu	n-Ø tter- nde 3B
		pro inch	mm	min. mm	max. mm			pro inch	mm	min. mm	max. mm
Nr. 6	-	32	2,85	2,733	2,939	Nr. 6	-	40	3,00	2,888	3,053
Nr. 8	-	32	3,55	3,393	3,599	Nr. 8	-	36	3,60	3,480	3,663
Nr. 10	-	24	4,00	3,795	4,064	Nr. 10	-	32	4,20	4,054	4,255
Nr. 12	-	24	4,60	4,455	4,704	Nr. 12	-	28	4,75	4,602	4,816
1/4	-	20	5,30	5,113	5,387	1/4	-	28	5,60	5,466	5,662
⁵ / ₁₆	-	18	6,75	6,563	6,833	⁵ /16	-	24	7,00	6,906	7,109
3/8	-	16	8,20	7,978	8,255	3/8	-	24	8,60	8,494	8,679
7/16	-	14	9,60	9,346	9,639	⁷ / ₁₆		20	10,00	9,876	10,084
1/2	-	13	11,00	10,798	11,095	1/2	-	20	11,60	11,463	11,661
9/16	-	12	12,40	12,228	12,482	9/16	-	18	13,00	12,913	13,122
5/8	-	11	13,80	13,627	13,904	5/8		18	14,60	14,501	14,702

3,053

3,663

4,255

4,816

5,662

7,109

8,679 10,084

13,122

14,702

18,676

18,210

M 48 5,00 M 52

5,00

 $^{^{\}star}$ MJ 3 x 0,50 bis MJ 5 x 0,80 Kern-Ø Muttergewinde 6H

Kernlochdurchmesser für das Gewindeschneiden

		NF-Gewin					W-(Whitw ewinde E			C		orth-) Ro h DIN-IS0		le			nzerrohr ch DIN 4		е
Nenn- Ø	Gang	Kern- loch- (Bohr-)Ø	Ker Mutterg 2	ewinde	Nenn- Ø		Kern- loch- (Bohr-)Ø		n-Ø gewinde	Nenn- Ø	Gang	Kern- loch- (Bohr-)Ø	Ker Mutterg		Nenn Ø	- Gang	Kern- loch- (Bohr-)Ø	Mutterg	rn-Ø gewinde
	pro inch	DIN 336 mm	min. mm	max. mm		pro inch	mm	min. mm	max. mm		pro inch	DIN 336 mm	min. mm	max. mm		pro inch	mm	min. mm	max. mm
Nr. 1	- 72	1,55	1,473	1,610	W ¹ / ₁₆	60	1,20	1,045	1,230	G ¹ / ₁₆	28	6,80	6,561	6,843	Pg 7	20	11,40	11,280	11,430
Nr. 2	- 64	1,85	1,755	1,910	$W^{3/32}$	48	1,80	1,704	1,912	G ¹ / ₈	28	8,80	8,566	8,848	Pg 9	18	14,00	13,860	14,010
Nr. 3	- 56	2,15	2,024	2,197	$W^{1/8}$	40	2,50	2,362	2,591	G 1/4	19	11,80	11,445	11,890	Pg 11	18	17,30	17,260	17,410
Nr. 4	- 48	2,40	2,271	2,459	W 5/32	32	3,20	2,952	3,214	G ³ / ₈	19	15,25	14,950	15,395	Pg 13,	5 18	19,00	19,060	19,210
Nr. 5	- 44	2,70	2,550	2,741	$W^{3/16}$	24	3,60	3,407	3,745	G 1/2	14	19,00	18,631	19,172	Pg 16	18	21,30	21,160	21,310
Nr. 6	- 40	2,95	2,819	3,023	$W^{7/32}$	24	4,50	4,201	4,539	G ⁵ / ₈	14	21,00	20,587	21,128	Pg 21	16	26,90	26,780	27,030
Nr. 8	- 36	3,50	3,404	3,607	W 1/ ₄	20	5,10	4,724	5,156	G 3/4	14	24,50	24,117	24,658	Pg 29	16	35,50	35,480	35,730
Nr. 10	- 32	4,10	3,962	4,166	W ⁵ / ₁₆	18	6,50	6,130	6,590	G ⁷ /8	14	28,25	27,877	28,418	Pg 36	16	45,50	45,480	45,730
Nr. 12	- 28	4,60	4,496	4,724	$W^{3/8}$	16	7,90	7,492	7,987	G 1	11	30,75	30,291	30,931	Pg 42	16	52,50	52,480	52,730
1/4	- 28	5,50	5,359	5,588	W ⁷ / ₁₆	14	9,20	8,789	9,330	G 1 ¹ / ₈	11	35,50	34,939	35,579	Pg 48	16	57,80	57,780	58,030
⁵ /16	- 24	6,90	6,782	7,036	$W^{1/2}$	12	10,50	9,989	10,591	G 1 ¹ / ₄	11	39,50	38,952	39,592					
3/8	- 24	8,50	8,382	8,636	W ⁹ / ₁₆	12	12,00	11,577	12,179	G 1 ¹ / ₂	11	45,25	44,845	45,485					
7/16	- 20	9,90	9,728	10,033	W 5/8	11	13,50	12,918	13,558	G 13/ ₄	11	51,00	50,788	51,428					
1/2	- 20	11,50	11,328	11,608	$W^{3/4}$	10	16,25	15,797	16,483	G 2	11	57,00	56,656	57,296					
9/16	- 18	12,90	12,751	13,081	W 7/8	9	19,25	18,611	19,353										
5/8	- 18	14,50	14,351	14,681	W 1	8	22,00	21,334	22,147										
3/4	- 16	17,50	17,323	17,678	W 1 1/8	7	24,50	23,928	24,832										
7/8	- 14	20,40	20,269	20,650	W 1 1/4	7	27,75	27,103	28,007										
1	- 12	23,25	23,114	23,571	W 1 ³ / ₈	6	30,50	29,504	30,528										
1 ¹ / ₈	- 12	26,50	26,289	26,746	$W 1^{1/2}$	6	33,50	32,679	33,703										
1 1/4	- 12	29,50	29,464	29,921	W 1 ⁵ / ₈	5	35,50	34,769	35,963										
1 3/8	- 12	32,75	32,639	33,096	W 13/ ₄	5	39,00	37,944	39,138										
1 1/2	- 12	36,00	35,814	36,271	W 2	4,5	44,50	43,571	44,877										

	NPT ANSI B 2.1 Amerik. kegeliges Rohrgewinde Kegel 1:16												
Ausführung A (möglichst vermeiden)	Ausführung B	Nenn- Ø	Gang pro inch	Kernloch-Ø zylindr. (A) d1	Kernloch-Ø konisch (B) D1	Einschneidtiefe ET mm	Bohrtiefe BT (min) mm						
d,	D,	1/16	- 27	6,15	6,39	9,29	10,7						
< -`	- ' 	1/8	- 27	8,40	8,74	9,32	10,8						
		1/4	- 18	11,10	11,36	13,52	15,6						
		3/8	- 18	14,30	14,80	13,83	16,0						
		1/2	- 14	17,90	18,32	18,07	20,8						
		3/4	- 14	23,30	23,67	18,55	21,3						
		1	- 11,5	29,00	29,69	22,29	25,6						
		1 1/4	- 11,5	37,70	38,45	22,80	26,1						
	(////// d.	1 1/2	- 11,5	43,70	44,52	22,80	26,1						
		2	- 11,5	55,60	56,56	23,20	26,5						
\///X///\		2 1/2	- 8	66,30	67,62	31,75	36,3						
<u> </u>		3	- 8	82,30	83,52	33,74	38,5						

			./Metr. Fein drahteinsät	•		für G			(UNC-STI) (hteinsätze		3.29.1			(UNF-STI) (hteinsätze		3.29.1
Nenn- Ø		Stei- gung P	Kernloch (Bohr-)Ø	Ker Mutterg		Nenn- Ø		Gang	Kernloch (Bohr-)Ø	Kerı Mutterg		Nenn- Ø	Gang	Kernloch (Bohr-)Ø	Keri Mutterg	
		mm	mm	min. mm	max. mm			pro inch	mm	min. mm	max. mm		pro inch	mm	min. mm	max. mm
EG M 4	х	0,70	4,20	4,152	4,292	EG Nr. 6	-	32	3,80	3,678	3,879	EG Nr. 6 -	40	3,70	3,644	3,818
EG M 5	х	0,80	5,25	5,174	5,334	EG Nr. 8	-	32	4,40	4,338	4,524	EG Nr. 8 -	36	4,40	4,321	4,498
EG M 6	х	1,00	6,30	6,217	6,407	EG Nr. 10	-	24	5,20	5,055	5,283	EG Nr. 10 -	32	5,10	4,999	5,184
EG M 8	х	1,25	8,40	8,271	8,483	EG Nr. 12	-	24	5,80	5,715	5,944	EG Nr. 12 -	28	5,70	5,682	5,809
EG M10	х	1,50	10,50	10,324	10,560	EG 1/4	-	20	6,70	6,624	6,868	EG 1/4 -	28	6,60	6,546	6,721
EG M12	х	1,75	12,50	12,379	12,644	EG 5/16	-	18	8,40	8,242	8,489	EG ⁵ / ₁₆ -	24	8,25	8,166	8,352
EG M14	х	1,25	14,40	14,271	14,483	EG ³ / ₈	-	16	10,00	9,868	10,127	EG ³ / ₈ -	24	9,80	9,754	9,931
EG M16	х	2,00	16,50	16,433	16,733	EG ⁷ / ₁₆	-	14	11,60	11,506	11,783	EG ⁷ / ₁₆ -	20	11,50	11,389	11,585
						EG 1/2	-	13	13,30	13,122	13,393	EG ¹ / ₂ -	20	13,10	12,974	13,172
						EG ⁹ / ₁₆	-	12	14,90	14,747	15,032	EG ⁹ / ₁₆ -	18	14,70	14,592	14,798
						EG 5/8	-	11	16,50	16,375	16,673	EG 5/8 -	18	16,25	16,180	16,386

Empfohlene Bohrdurchmesser für das Gewindeformen

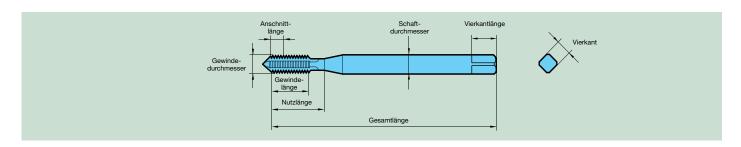
		Metris	che ISO	O-Gewi 13	nde							Metr	ische ISC	O-Feinge N 13	winde					
		Bohr-	Boh	ır-Ø	Ker			x Stei-		Boł	ır-Ø	Ker			x Stei-		Boh	ır-Ø	Ker	
Ø	gung P	Ø			Mutterg 7H		Ø	gung P	Ø			Mutterg 7H		Ø	gung P	Ø			Mutterg 7H	
	Р		min.	max.	min.	max.		F		min.	max.	min.	max.		F		min.	max.	min.	max.
mm		mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
M 2	0,40	1,85	1,84	1,88	1,567	1,679	M 2,5	x 0,35	2,35	2,35	2,38	2,121	2,221	M 17	x 1,00	16,55	16,52	16,62	15,917	16,217
M 2,2	0,45	2,00	2,01	2,05	1,713	1,838	М3	x 0,35	2,85	2,85	2,88	2,621	2,721	M 17	x 1,50	16,30	16,26	16,38	15,376	15,751
M 2,5	0,45	2,30	2,28	2,32	2,013	2,138	M 4	x 0,35	3,85	3,85	3,88	3,621	3,721	M 18	x 1,00	17,55	17,52	17,62	16,917	17,217
М3	0,50	2,80	2,78	2,85	2,459	2,639	M 4	x 0,50	3,80	3,78	3,83	3,459	3,639		x 1,50	•		,	16,376	16,751
M 3,5	0,60	3,25	3,23	3,30	2,850	3,050	M 5	x 0,50	4,80	4,78	4,83	4,459	4,639		x 2,00	•		,	15,835	16,310
M 4	0,70	3,70	3,68	3,76	3,242	3,466		x 0,50	5,30	5,28	5,33	4,959	5,139		x 1,00				18,917	19,217
M 4,5	0,75	4,20					M 6	x 0,75	5,65	5,62	5,70	5,188	5,424		x 1,50			19,38	18,376	19,751
M 5	0,80	4,65	4,62	4,71	4,134	4,384	M 7	x 0,75	6,65	6,62	6,70	6,188	6,424		x 1,00				22,917	23,217
M 6	1,00	5,55	5,52	5,62	4,917	5,217	M 8	x 0,75	7,65	7,62	7,70	7,188	7,424		x 1,50				22,376	22,751
M 7	1,00	6,55	6,52	6,62	5,917	6,217	M 8	x 1,00	7,55	7,52	7,62	6,917	7,217		x 2,00	•		,	21,835	22,310
M 8	1,25	7,40	7,36	7,47	6,647	6,982	М 9	x 0,75	8,65	8,62	8,70	8,188	8,424		x 1,50	•		,	25,376	25,751
M 9	1,25	8,40	8,36	8,47	7,647	7,982		x 1,00	8,55	8,52	8,62	7,917	8,217		x 1,50		_		28,376	28,751
M 10	1,50	9,30	9,26	9,38	8,376	8,751		x 0,75	9,65	9,62	9,70	9,188	9,424		x 1,50			,	31,376	31,751
M 11	,	10,30	,	,	9,376	9,751		x 1,00	9,55	9,52	9,62	8,917	9,217		x 1,50				34,376	34,751
M 12		11,20			10,106	10,531		x 1,25	9,40	9,36	9,47	8,647	8,982		x 1,50				37,376	37,751
M 14	,	13,10	,	,	11,835	12,310		x 0,75	10,65		10,70	10,188	10,424	M 42	x 1,50	41,30	41,26	41,38	42,376	42,751
M 16	,	15,10	,	,	13,835	14,310		x 1,00			,	9,917	10,217							
M 18		16,90			15,294	15,854		x 1,00				10,917	11,217							
M 20	,	18,90	,	,	17,294	17,854		x 1,25			,	10,647								
M 22	,	20,90	,	,	19,294	19,854		x 1,50		,	,	10,376	10,751							
M 24		22,70			20,752	21,382		x 1,00				12,917	13,217							
M 27	,	25,70	,	,	23,752	24,382		,	13,40		13,47	12,647	12,982							
M 30	,	28,50	,	,	26,211	26,921		x 1,50		,	,	12,376	12,751							
M 33	-,	31,50	- , -		29,211	29,921		x 1,00				13,917	14,217							
M 36		34,30			31,670	32,420		x 1,50			14,38	13,376	13,751							
M 39	,	37,30	,	,	34,670	35,420		x 1,00			,	14,917	15,217							
M 42	4,50	40,10	39,95	40,20	37,129	37,979	M 16	x 1,50	15,30	15,26	15,38	14,376	14,751							

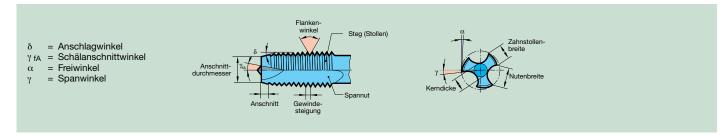
^{*} M 2 bis M 2,5 Kern-Ø Muttergewinde 6H

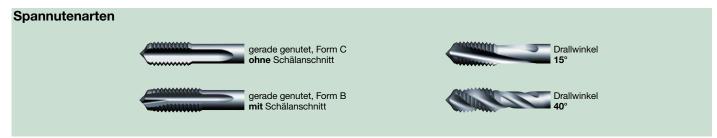
Kerndurchmesser-Toleranzfeld beim Gewindeformen (nach DIN 13, Teil 50)

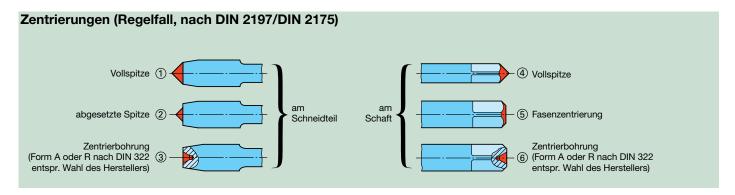
Aus Festigkeitsgründen ist es nicht erforderlich, die Kerndurchmessertoleranzen der Toleranzklasse 6H einzuhalten; die Toleranzklasse 7H genügt dem Anspruch, dass die Flankenüberdeckung von Bolzen- und Muttergewinde 0,32 x P nicht unterschreiten soll. Außerdem haben geformte Gewinde wegen des nicht unterbrochenen Faserverlaufs und der erfolgten Kaltverfestigung im Regelfall eine höhere Festigkeit als geschnittene Gewinde.

 $^{^{\}star}$ M 2,5 x 0,35 bis M 4 x 0,35 Kern-Ø Muttergewinde 6H



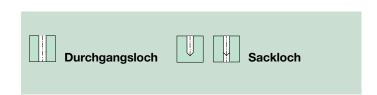

Empfohlene Bohrdurchmesser für das Gewindeformen


			IC-Gev ISME E							NF-Gev ASME I					(\	Whitwoi DIN		hrgewi O 228-		
Nenn- Ø	Gang	Bohr- Ø	Bol	nr-Ø	Ker Mutterg	ewinde	Nenn- Ø	Gang	Bohr- Ø	Boł	nr-Ø	Keri Mutterg	ewinde	Nenn- Ø	Gang	Bohr-	Bol	nr-Ø	Ker Mutterg	
	pro inch	mm	min. mm	max. mm	min. mm	max. mm		pro inch	mm	min. mm	max. mm	min. mm	max. mm		pro inch	mm	min. mm	max. mm	min. mm	max. mm
Nr. 1 -	- 64	1,68	1,67	1,70	1,425	1,580	Nr. 1	- 72	1,70	1,69	1,72	1,473	1,610	G ¹ / ₁₆	28	7,30	7,28	7,35	6,561	6,843
Nr. 2	- 56	1,98	1,97	2,01	1,694	1,872	Nr. 2	- 64	2,00	1,99	2,03	1,755	1,910	G ¹ / ₈	28	9,30	9,28	9,35	8,566	8,848
Nr. 3	- 48	2,28	2,27	2,32	1,941	2,146	Nr. 3	- 56	2,30	2,29	2,34	2,024	2,197	G 1/4	19	12,50	12,48		11,445	11,890
Nr. 4		2,55	2,54	2,59	2,157	2,385	Nr. 4		2,60	2,59	2,63	2,271	2,459	G ³ / ₈	19	16,00	· '	16,05	14,950	15,395
Nr. 5	- 40	2,90	2,89	2,94	2,487	2,698	Nr. 5	- 44	2,90	2,89	2,93	2,550	2,741	G 1/2	14	20,00	.,	20,12	18,631	19,172
Nr. 6	- 32	3,15	3,14	3,19	2,642	2,896	Nr. 6	- 40	3,20	3,19	3,24	2,819	3,023	G 5/8	14	22,00	21,98	22,12	20,587	21,128
Nr. 8	- 32	3,80	3,78	3,82	3,302	3,531	Nr. 8	- 36	3,85	3,83	3,88	3,404	3,607	G ³ / ₄	14	25,50	25,48	25,62	24,117	24,658
Nr. 10 ·	- 24	4,35	4,33	4,39	3,683	3,937	Nr. 10	- 32	4,45	3,43	4,49	3,962	4,166	G ⁷ / ₈	14	29,25	29,23	29,37	27,877	28,418
Nr. 12 -	- 24	5,00	4,97	5,03	4,343	4,597	Nr. 12	- 28	5,10	5,07	5,13	4,496	4,724	G 1	11	32,00	31,98	32,15	30,291	30,931
1/4 -	- 20	5,75	5,72	5,80	4,978	5,258	1/4	- 28	5,95	5,92	5,99	5,359	5,588	G 1 ¹ / ₄	11	40,75	40,70	40,85	38,952	39,592
⁵ /16 -	- 18	7,30	7,26	7,37	6,401	6,731	⁵ /16	- 24	7,45	7,42	7,50	6,782	7,036							
3/8 .	- 16	8,80	8,77	8,88	7,798	8,153	3/8	- 24	9,05	9,02	9,10	8,838	8,636							
7/16	- 14	10,30	10,27	10,37	9,144	9,550	7/16	- 20	10,55	10,48	10,58	9,728	10,033							
1/2 -	- 13	11,80	11,77	11,88	10,592	11,024	1/2	- 20	12,10	12,08	12,18	11,328	11,608							
⁹ /16 -	- 12	13,30	13,28	13,39	11,989	12,446	⁹ /16	- 18	13,65	13,61	13,72	12,751	13,081							
5/8	- 11	14,80	14,78	14,90	13,386	13,868	5/8	- 18	15,25	15,21	15,32	14,351	14,681							
3/4 .	- 10	17,90	17,85	17,97	16,307	16,840	3/4	- 16	18,35	15,30	18,41	17,323	17,678							
7/8 -	- 9	21,00	20,95	21,10	19,177	19,761	7/8	- 14	21,40	21,35	21,49	20,269	20,650							
1 -	- 8	24,00	23,95	24,12	21,971	22,606	1	- 12	24,45	24,40	24,54	23,114	23,571							

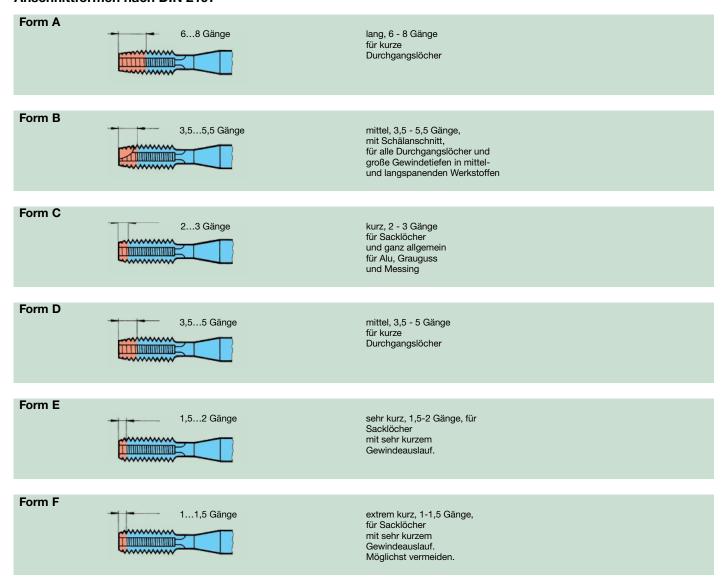


Begriffe und Winkel, Zentrierungen und Spannutarten

	Zentrierungsart	am Schneidkeil	
Gewindedurchmesserbereich mm	mit Anschnittform A, C, D, E	mit Anschnittform B	Zentrierungsart am Schaft
≤ 4,2	1	1	456
> 4,2 5,6	1 2	1	456
> 5,6 10,0	1 2 3	1 2 3	4 5 6
> 10,0	3	3	6

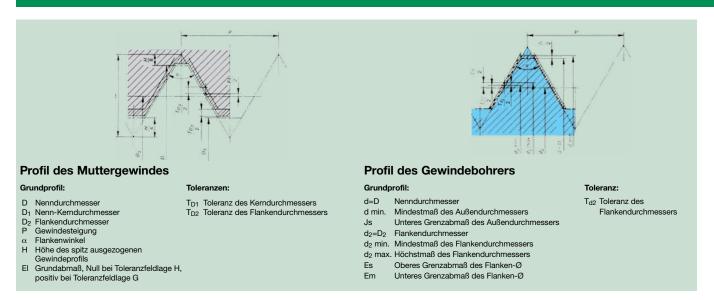


Anschnittformen - Auswahl und Anwendung


Beim Innengewindeschneiden wird die gesamte Zerspanungsarbeit von den Zähnen des Anschnitts geleistet. Die Entscheidung über die bestgeeignete Anschnittform ist deshalb sehr sorgfältig zu treffen. Davon werden in hohem Maße sowohl die Standzeit des Gewindebohrers als auch die Qualität des Gewindes beeinflusst.

Form und Länge des Anschnitts sind grundsätzlich abhängig von der Art des Kernlochs. Das Durchgangsloch bedarf keiner weiteren Definition. Als Sackloch dagegen werden alle Bohrungen bezeichnet, aus denen beim Gewindeschneiden die Späne entgegen der Vorschubrichtung abgeführt und beim Rücklauf des Gewindebohrers abgeschert werden müssen. Sacklöcher können also sehr wohl auch durchgehende Bohrungen sein.

Die Anschnittlänge bestimmen an und für sich gegensätzliche Überlegungen. Um Überlastung, vorzeitige Abstumpfung und zu große Gewinde zu vermeiden, sollte die Anzahl der Anschnittgänge nicht zu klein gehalten werden. Andererseits erhöht ein zu langer Anschnitt das Drehmoment und damit die Bruchgefahr. Der Schälanschnitt, Form B, gewährleistet, dass die Spanabfuhr stets in Vorschubrichtung erfolgt.



Anschnittformen nach DIN 2197

Gewindebohren für Metrische ISO-Gewinde DIN EN 22857 (Auszug)

Mit dem Ziel, die Gewinde international zu vereinheitlichen, ist das ISO-Gewinde geschaffen worden. Inzwischen hat es sich eindeutig durchgesetzt. Das Metrische ISO-Gewinde ist heute die gebräuchlichste Gewindeart. Diese Tatsache spiegelt sich auch in unserem Gewindebohrerprogramm wider.

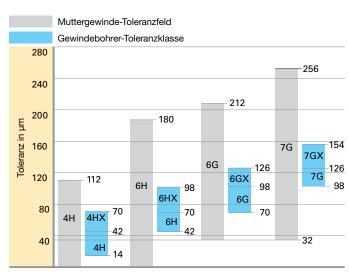
Die Toleranzqualitäten (Ziffernkennzeichnung)

Beim Bolzengewinde werden die Toleranzqualitäten durch die Ziffern 3 bis 9, beim Muttergewinde durch die Ziffern 4 bis 8 ausgedrückt. Die 3 steht für die engste, die 9 für die weiteste Toleranz.

Die Toleranzlagen (Buchstabenkennzeichnung)

Sie werden beim ISO-Muttergewinde mit den großen Buchstaben A bis H, beim ISO-Bolzengewinde mit den kleinen Buchstaben a bis h gekennzeichnet. Die Toleranzlagen A bis G bzw. a bis g haben positive bzw. negative Grundabmaße. Die Toleranzlagen H und h dagegen beginnen beim Nullmaß. Normalerweise werden die Toleranzlagen H und g verwendet; für Gewinde, die eine Oberflächenbehandlung erhalten, die Toleranzlagen G und e.

Bei der Herstellung von ISO-Gewindebolzen ist bezüglich der Toleranzlagen a bis g darauf zu achten, dass die festgelegten Abmaße für den Außendurchmesser berücksichtigt werden (Bolzen-Außendurchmesser = Nenn-Durchmesser minus Abmaß).

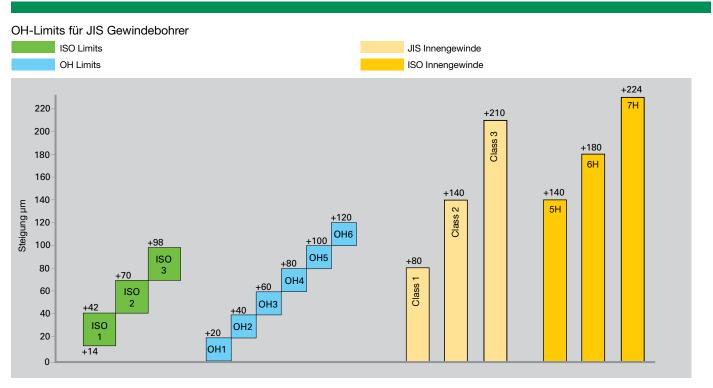

Die Toleranzfelder (Muttergewinde)/ Toleranzklassen (Gewindebohrer)

Toleranzqualität und Toleranzlage bestimmen das Toleranzfeld. Seine Kennzeichnung erfolgt durch Verwendung der jeweiligen Ziffern und Buchstaben.

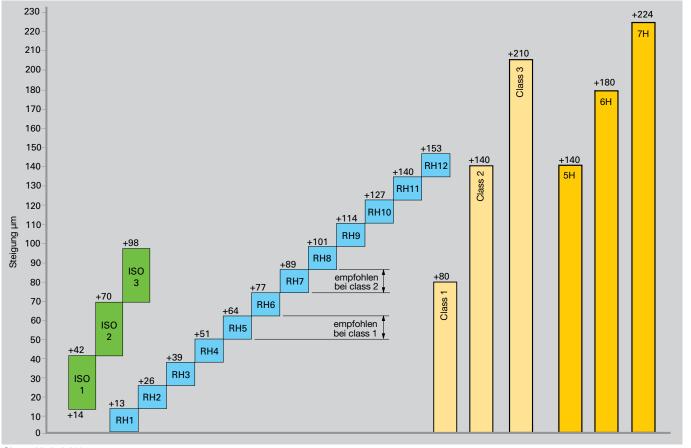
Das Kurzzeichen für die Toleranzklasse des Gewindebohrers entspricht dem Toleranzfeld des Muttergewindes, für welches der Gewindebohrer überwiegend Anwendung findet. Es ist also nicht in jedem Anwendungsfall identisch mit dem Toleranzfeld des geschnittenen Muttergewindes.

Gewindebohrer mit abweichenden Toleranzwerten nach DIN 802 Teil 1 werden durch den zusätzlichen Buchstaben »X« gekennzeichnet (6 HX, 6 GX). Wir empfehlen, die Gewindebohrer gemäß nachfolgender Grafik einzusetzen:

Toleranzfeld-/Toleranzklassen-Zuordnung


Anwendu des Gewir	ngsklasse ndebohrers Kennzeichn.		des zu	leranzfe schneid tergewir	denden		DIN 802 Teil1 (zurückgezogen) Toleranzklasse des Gewindebohrers
Klasse 1	ISO 1	4H	5H				4H
Klasse 2	ISO 2			6H			6H
Klasse 3	ISO 3				6G		6G
-						7G	7G

^{*} Die Toleranzen der drei Anwendungsklassen werden gemäß den nachstehenden Angaben in Abhängigkeit von einer Toleranzeinheit t errechnet, deren Wert dem der Flankendurchmessertoleranz TD₂ bei Toleranzklasse 5 des Muttergewindes entspricht (extrapoliert bis 0,2 mm Steigung):


t = T_{D2} Toleranzklasse 5 des Muttergewindes

JIS-Gewindebohrer

Oberes Limit: 0.0127×n Unteres Limit: 0.0127×n - 0.0127 Einheit: mm / n = RH Nummer

Gewindebohrer für Metrische ISO-Gewinde DIN EN 22857 (Auszug)

Die Gewindepassungen

Paarungen von Innen- und Außengewinden werden durch einen Schrägstrich getrennt, z. B. 6H/6g (Mutter/Bolzen).

Die Passung ist dem Zweck der jeweiligen Gewindeverbindung entsprechend zu wählen.

Die Toleranzfelder der Toleranzklassen mittel, fein, grob sind den drei Einschraublängen normal (N), kurz (S) und lang (L) zugeordnet. Im Allgemeinen gelten für die Auswahl der Toleranzklassen folgende Regeln:

Toleranzklasse fein (S):

Für Präzisionsgewinde, wenn nur kleine Variationen im Passcharakter erlaubt sind.

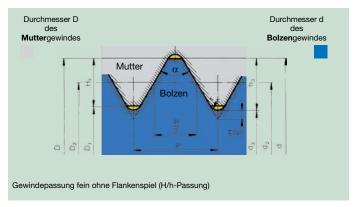
Toleranzklasse mittel (N):

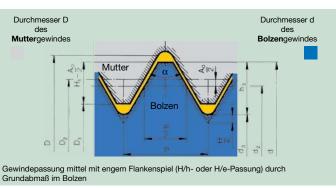
Allgemeine Verwendung

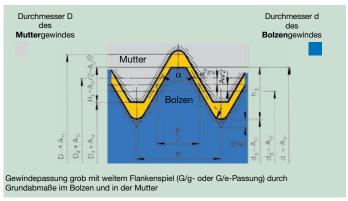
Toleranzklasse grob (L):

Wenn keine besonderen Anforderungen an die Genauigkeit gestellt werden und in Fällen, in denen Fertigungsschwierigkeiten auftreten können, z. B. bei Gewinden an warmgewalzten Stäben, beim Gewindeschneiden in tiefen Grundlöchern oder bei Gewinden an Kunststoffteilen.

Die Einschraublängen


Auch die Einschraublängen beeinflussen die Qualität der Gewindeverbindung. Das ISO-Toleranz-System wurde speziell für den Flankendurchmesser – auf drei Einschraublängen abgestimmt.


S (Short) = kurze Einschraublänge N (Normal) = normale Einschraublänge L (Long) = lange Einschraublänge


Bei der normalen Einschraublänge N sind folgende Paarungen zu wählen:

Im Interesse einer größeren Belastbarkeit der Gewindeverbindung empfehlen wir bei kurzen Einschraublängen engere Paarungen zu wählen. Bei langen Einschraublängen sind zum Ausgleich von Steigungsabweichungen Paarungen mit größerer Passtoleranz zu verwenden.

Die Gewindepassungen bei unterschiedlichem Flankenspiel

Fehler und Schwierigkeiten mit neuen Gewindebohrern

Fehler	Ursachen	Gegenmaßnahmen			
1 Gewinde wird zu groß	Geometrie für den Einsatzfall nicht geeignet Kernlochbohrung zu klein	 richtigen Gewindebohrer für den zu bearbeitenden Werkstoff einsetzen. Kernlochbohrung mit richtigem Durchmesser herstellen, siehe Gewindekernlochtabelle im allg. 			
	Positions- oder Winkelfehler der Kernlochbohrung	 Werkstückspannung auf Korrektheit prüfen Verwendung eines achsparallelen Gewindeschneidfutters Kernlochbohrer überprüfen 			
	■ Maschinenspindel axial schwergängig	 maschinellen Vorschub benutzen Gewindeschneidfutter mit Längen- ausgleich einsetzen 			
	■ Gewindebohrer mit Kaltverschweißung an den Flanken	 neuen Gewindebohrer oder Gewindebohrer mit Oberflächenveredlung einsetzen Kühlschmierung optimieren 			
	Führung des Gewindebohrers wegen unzureichender Gewindetiefe schlecht	 mit Zwangsvorschub schneiden Gewindebohrer mit besserer Führungseigenschaft einsetzen 			
	zu hohe Schnittgeschwindigkeit	 Schnittgeschwindigkeit anpassen Kühlschmierung optimieren 			
	Kühlschmiermittel bzwzufuhr unzureichend	■ für geeignetes Kühlschmiermittel in ausreichender Menge sorgen			
	Toleranz des Gewindebohrers entspricht nicht den Angaben der Zeichnung und/oder der Gewindelehre	einen der Toleranz entsprechenden Gewindebohrer einsetzen			
Gewinde axial verschnitten	 spiralgenutete Gewindebohrer, entsprechend unseren Ausführungen, werden mit zu starkem Anschnittdruck eingesetzt. 	 Gewindebohrer beim Anschneiden nur leicht andrücken. Der Gewindebohrer soll sofort in den Zugausgleichsbereich des Gewindeschneidfutters kommen. 			
	Schälanschnitt-Gewindebohrer, entsprechend unserer "B"-Ausführungen, haben einen zu geringen Anschnittdruck	bei Schälanschnitt oder linksgenuteten Gewindebohrern ist ein stärkeres axiales Andrücken beim Anschneiden erforderlich. Gewindebohrer im Ausgleichsbereich des Gewindeschneidfutters halten.			
3					
Gewinde wird zu eng	 Toleranz des Gewindebohrers entspricht nicht den Angaben der Zeichnung und/oder der Gewindelehre 	einen der Toleranz entsprechenden Gewindebohrer einsetzen			
	■ Gewindebohrer ungeeignet	richtigen Gewindebohrer für den zu bearbeitenden Werkstoff einsetzen.			
	Gewindebohrer schneidet nicht lehrenhaltig (Gewinde-Gut-Lehrdorn)	■ Vermeiden von starken Axialkräften während des Schneidvorgangs			
333	Arbeitsspindel axial schwergängig	Gewindeschneidfutter mit Längen- ausgleich verwenden			

Fehler und Schwierigkeiten mit neuen Gewindebohrern

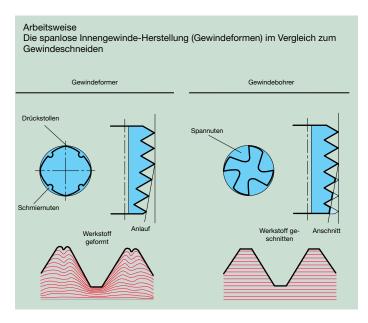
- - - - -					
CHICI	Ursachen	Gegenmaßnahmen			
Gewindeoberfläche unsauber	Geometrie für den Einsatzfall nicht geeignet Schnittgeschwindigkeit zu hoch Kühlschmiermittel bzwzufuhr unzureichend Spänestau Kernlochbohrung zu klein bei zähharten Werkstoffen Werkzeugbelastung zu hoch bzw. Steigung zu groß	den "richtigen" Gewindebohrer für den zu bearbeitenden Werkstoff einsetzen - Schnittgeschwindigkeit verringern - Schmierung optimieren für geeignetes Kühlschmiermittel in ausreichender Menge sorgen einen geeigneten Gewindebohrertyp einsetzen Kernlochbohrung mit richtigem Durchmesser herstellen, siehe Gewindekernlochtabelle Verwenden von Satz-Gewindebohrern Gewindebohrer mit Oberflächenveredlung			
	Aufbauschneiden Kaltverschweißungen	 Gewindebohrer mit Oberflächenveredlung einsetzen. Kühlschmierung optimieren 			
Standweg zu gering	Kernlochoberfläche verfestigtsiehe alle Ursachen unter: "Gewindeoberfläche unsauber"	 Bohrwerkzeug auf Verschleiß (Schneidschärfe) prüfen. Wärme- oder Oberflächenbehandlung nach dem Gewindeschneiden ausführen siehe alle Fehler unter: "Gewindeoberfläche unsauber" 			
	Spänestau	geeigneten Gewindebohrer einsetzen			
Werkzeugbruch beim Vor- bzw. Rücklauf	Kernlochbohrung zu klein Anschnittzähne überlastet	Kernlochbohrung mit richtigem Durchmesser herstellen, siehe Gewindekernlochtabelle - längerer Anschnitt (Sack- oder			
	■ Gewindebohrer läuft auf Kernlochgrund auf	Durchgangsbohrung) beachten - Anzahl der Anschnittzähne vergrößern durch mehr Spannuten - Satz-Gewindebohrer einsetzen - Bohrungstiefe prüfen - Gewindeschneidfutter mit Längenausgleich bzw. Drehmoment- Überlastungssicherung einsetzen			
	- fehlende oder falsche Ansenkung der Kernlochbohrung bzw Positions- oder Winkelfehler der Kernlochbohrung	 Ansenken der Kernlochbohrung im richtigen Winkel auf korrekte Werkstückspannung achten. Gewindeschneidfutter mit achsparalleler Pendelung verwenden Kernlochbohrer überprüfen 			
	 Härte des Werkzeuges für die Bearbeitung nicht geeignet Schneidengeometrie für Bearbeitung ungeeignet 	Für den Bearbeitungsfall geeigneten Gewindebohrer verwenden.			

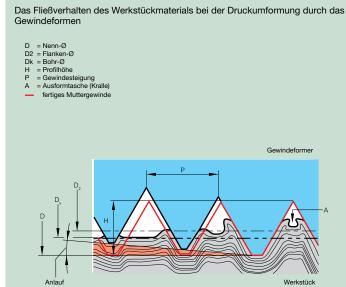
Fehler und Schwierigkeiten mit nachgeschliffenen Gewindebohrern

Fehler	Ursachen	Gegenmaßnahmen			
Z Gewinde wird zu groß	Schleifgrat Schneidengeometrien (Anschnitt-, Span- und Anschnittfreiwinkel sowie Schälanschnittwinkel) nicht eingehalten	 Schleifgrat entfernen - beim Nachschleifen technische Angaben berücksichtigen. - Nachschleifanweisungen beachten 			
8 Gewinde wird zu eng	Abgenutzter Teil nicht sauber nachgeschliffen Gewindebohrer durch zu häufiges Nachschleifen zu klein	Nochmals nachschleifen oder neues Werkzeug einsetzen. Max. Nachschleifgrenze beachten - max. Nachschleifgrenze erreicht neuen Gewindebohrer einsetzen			
9 Gewindeoberfläche unsauber	Schleifgrat Schneidengeometrien (Anschnitt-, Span- und Anschnittfreiwinkel sowie Schälanschnittwinkel) nicht eingehalten Oberflächenrautiefe an den nachgeschliffenen Gewindebohrern zu groß Kaltverschweißungen an den Gewindeflanken	 Schleifgrat entfernen beim Nachschleifen technische Angaben berücksichtigen. Nachschleifanweisungen beachten nochmals nachschleifen oder neues Werkzeug einsetzen. Nachschleifanweisung beachten! Kaltverschweißungen entfernen 			
10 Standweg zu gering	Schneidengeometrien (Anschnitt-, Span- und Anschnittfreiwinkel sowie Schälanschnittwinkel) nicht eingehalten Härteverlust des Gewindebohrers durch Wärmeeinfluss beim Nachschleifen Verlust der Oberflächenbehandlung	 beim Nachschleifen technische Angaben berücksichtigen. Nachschleifanweisungen beachten Schleifscheibenqualität prüfen Kühlmittelzufuhr prüfen Nachbeschichten Beschichtung für zu zerspanenden Werkstoff überprüfen 			

Gewindeformer, auch Gewindefurcher oder Gewindedrücker genannt, sind Werkzeuge für die spanlose Herstellung von Innengewinden. Im Gegensatz zum Gewindeschneiden, bei dem Material aus dem Werkstoff herausgeschnitten wird, handelt es sich beim Gewindeformen um ein spanloses, druckumformendes Verfahren zur Herstellung von Innengewinden, bei dem der Werkstoff kalt verformt wird, ohne den so genannten "Faserverlauf" zu unterbrechen.

Nach DIN 8583 wird das Gewindeformen als "Eindrücken eines Gewindes in ein Werkstück durch ein Werkzeug mit einer schraubenförmigen Wirkfläche" bezeichnet. Der schraubenförmige, mit einem Polygon versehene Gewindeteil des Formers wird dabei mit einem gleichmäßigen, der Steigung des Gewindes entsprechenden Vorschub in das vorgebohrte Werkstück "eingeschraubt". Dabei drückt sich das Gewindeprofil sozusagen stufenweise über den Anlauf (Anschnitt) des Gewindeteils in den Werkstoff. Dadurch überschreitet die Spannung in der Stauchzone die Stauchgrenze und der Werkstoff wird plastisch verformt. Das Material weicht radial aus, "fließt" entlang des Gewindeprofils in den freien Zahngrund und bildet so den Kerndurchmesser des Muttergewindes. Durch den Fließprozess bilden sich an den Gewindespitzen die verfahrensspezifischen Ausformtaschen (Krallen).


Der Vorbohrdurchmesser ist stark von der Verformbarkeit des Werkstoffes, der Werkstückgeometrie und der gewünschten Tragtiefe des Gewindes abhängig. Gegenüber der zerspanenden Gewindeherstellung ist der Kernlochdurchmesser größer zu wählen. Mit größerem Vorbohrdurchmesser verringert sich die Belastung des Werkzeugs bei gleichzeitiger Erhöhung der Standzeit. Die Belastbarkeit des Gewindes ist durch den nicht unterbrochenen Faserverlauf und die Kaltverfestigung auch bei ca. 50 Prozent Tragtiefe bei Stahlwerkstoffen noch ausreichend. Die bei abnehmendem Traganteil unvollständig


ausgeformten Gewindespitzen sind ein typisches Kennzeichen geformter Gewindegänge. Bei vollständig ausgebildeter Flanke haben sie keinen Einfluss auf die Gewindefestigkeit. Der gewünschte Ausformgrad des Gewindes muss gegebenenfalls durch einen Versuch ermittelt werden.

Von ganz entscheidender Bedeutung beim Gewindeformen ist die Schmierung. Sie verhindert, dass sich Werkstoff auf den Gewindeflanken ansetzt, und gewährleistet, dass das notwendige Drehmoment nicht zu hoch wird. Deshalb darf die Schmierung auf keinen Fall ausfallen! Schmierfähige, graphithaltige Kühlschmiermittel oder Öle, wie sie auch beim Walzen verwendet werden, sind für die Schmierung beim Gewindeformen bestens geeignet. Arbeiten Sie immer nach dem Motto: "Gut geschmiert ist halb geformt!"

Die Vorteile des Gewindeformens

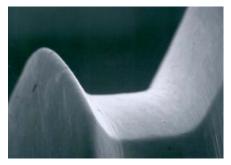
- Es fallen keine Späne an.
- Gewinde in Durchgangs- und Sacklöchern können mit demselben Werkzeug hergestellt werden.
- Eine breite Werkstoffpalette kann bearbeitet werden.
- Ein Verschneiden des Gewindes ist ausgeschlossen.
- Gewindesteigungs- und Flankenwinkelfehler, wie sie beim geschnittenen Gewinde auftreten können, sind ausgeschlossen.
- Geformte Innengewinde haben durch den so genannten "nicht unterbrochenen Faserverlauf" und die Kaltverfestigung besonders in den tragenden Gewindeflanken eine höhere Festigkeit.
- Das Gewinde hat eine bessere Oberfläche.
- Gewindeformer können mit höheren Schnittgeschwindigkeiten eingesetzt werden, da die Umformbarkeit vieler Werkstoffe mit der Formgeschwindigkeit zunimmt. Die Standzeit wird dadurch nicht negativ beeinflusst.
- Geringe Bruchgefahr durch stabile Werkzeugkonstruktion.

Nur durch Schleifen hergestellte Gewindeformer weisen auf ihrer Werkzeugoberfläche mehr oder weniger mikroskopisch feine Schleifriefen auf. Dies gilt auch für den Gewindeteil, der die Umformarbeit leisten muss.

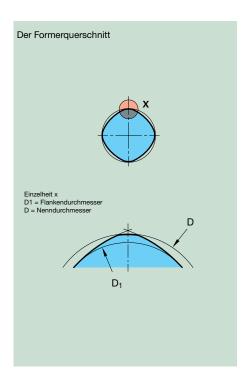
Diese Oberflächentopographie (Struktur) wirkt sich auf die Reibung zwischen Werkzeug und zu verformendem Werkstoff sowie die damit verbundene Wärmeentwicklung, auf das notwendige Drehmoment und nicht zuletzt auf den Verschleiß der Drückstollen des Formers negativ aus. Des Weiteren begünstigen die "Schleifriefen" das Festsetzen des zu verformenden Werkstoffes in den Gewindeflanken des Formers. Man spricht in diesem Fall von Materialaufschweißungen.

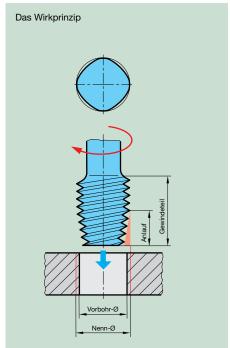
Durch ein spezielles Verfahren zur Verbesserung der Oberflächentopographie gibt es diese "Schleifriefen" bei den neuen Formern nicht mehr. Das zeigen Untersuchungen und unter Produktionsbedingungen durchgeführte Standzeittests in unterschiedlichen Werkstoffen.

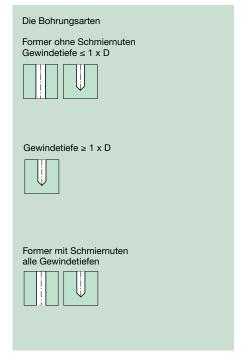
Der Anwender profitiert von diesem speziellen Verfahren durch eine längere Lebensdauer und höhere Schnittgeschwindigkeiten. Die Standzeiten können, je nach zu bearbeitendem Werkstoff und Einsatzbedingungen, beträchtlich erhöht werden. Doppelte Standzeiten sind keine Seltenheit.


Die verbesserte Oberflächentopographie kommt im Übrigen nicht nur blanken Werkzeugen zu Gute. Gerade beschichtete Werkzeuge profitieren auch von dem neuen Verfahren. Außenkontur und Anlauf bestimmen in hohem Maße die Arbeitsleistung eines Gewindeformers. So hat sich in zahlreichen Versuchen gezeigt, dass

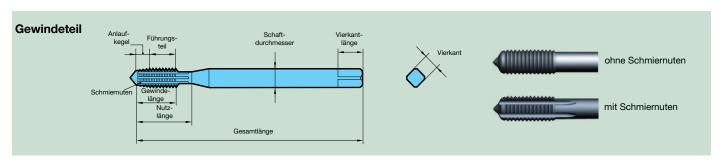
unsere Former mit optimaler Drückstollengeometrie und –anzahl hohe Standzeiten und Maßgenauigkeiten erzielen.

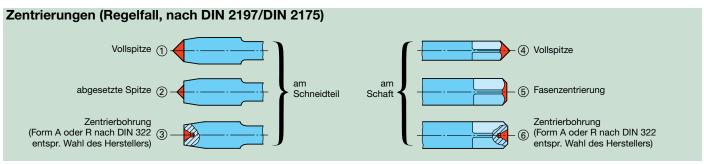

Einen weiteren Qualitätsfortschritt erreichen wir, indem wir die gesamte Formergeometrie in einer Aufspannung und mit einer Schleifscheibe – abgerichtet mit einer Spezialrolle – herstellen. Steigungsfehler in den Gangspitzen beim Anlaufübergang, wie sie bei herkömmlichen Schleifverfahren entstehen, gibt es dadurch nicht.




Zahn eines herkömmlichen Formers

Optimierte Oberfläche eines Hartner-Profile-Formers





Begriffe und Winkel, Zentrierungen und Gewindepassungen

	Zentrierungsart				
Gewindeformer- Durchmesserbereich mm	mit Anschnittform A, C, D, E	mit Anschnittform B	Zentrierungsart am Schaft		
≤ 5,6	①	①	456		
> 5,6 12,8	1 2 3	1 2 3	456		
> 12,8	3	3	6		

Gewindepassungen

Paarungen von Innen- und Außengewinden werden durch einen Schrägstrich getrennt, z. B. 6H/6g (Mutter/Bolzen).

Die Passung ist dem Zweck der jeweiligen Gewindeverbindung entsprechend zu wählen.

Die Toleranzfelder der Toleranzklassen mittel, fein, grob sind den drei Einschraublängen normal (N), kurz (S) und lang (L) zugeordnet. Im Allgemeinen gelten für die Auswahl der Toleranzklassen folgende Regeln:

Toleranzklasse fein (S):

Für Präzisionsgewinde, wenn nur kleine Variationen im Passcharakter erlaubt sind.

Einschraublängen

Auch die Einschraublängen beeinflussen die Qualität der Gewindeverbindung. Das ISO-Toleranz-System wurde speziell für den Flankendurchmesser auf drei Einschraublängen abgestimmt:

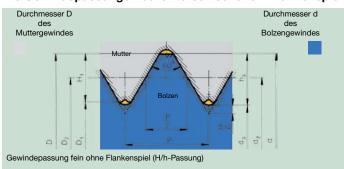
S (Short) = kurze Einschraublänge
N (Normal) = normale Einschraublänge
L (Long) = lange Einschraublänge

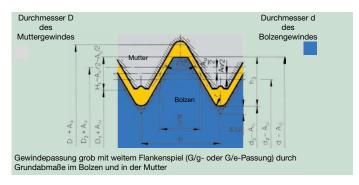
Toleranzklasse mittel (N):

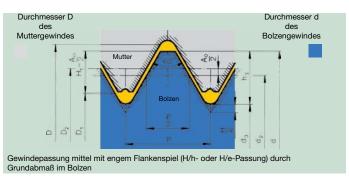
Allgemeine Verwendung

Toleranzklasse grob (L):

Wenn keine besonderen Anforderungen an die Genauigkeit gestellt werden und in Fällen, in denen Fertigungsschwierigkeiten auftreten können, z. B. bei Gewinden an warmgewalzten Stäben, beim Gewindeformen in tiefen Grundlöchern.


Bei der normalen Einschraublänge N sind folgende Paarungen zu wählen:


Im Interesse einer größeren Belastbarkeit der Gewindeverbindung empfehlen wir bei kurzen Einschraublängen engere Paarungen zu wählen.



Begriffe und Winkel, Zentrierungen und Gewindepassungen

Die Gewindepassungen bei unterschiedlichem Flankenspiel

Vorbohr-Durchmesser

Beim Gewindeformen beeinflusst der Vorbohr-Durchmesser die Ausprägung des geformten Gewindes. Ein zu kleiner Vorbohr-Durchmesser führt zu einer Überformung des Gewindes und ist unbedingt zu vermeiden, da er auch zum Werkzeugbruch

des Formers führen kann. Ein zu großer Vorbohr-Durchmesser kann in gewissen Toleranzen akzeptiert werden, da geformte Gewinde bereits ab 50% Tragtiefe eine ausreichende Belastbarkeit haben.

Vorbohr-Ø zu groß:

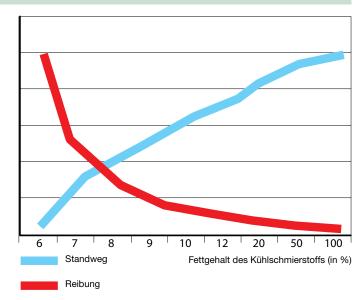
optimaler Vorbohr-Ø:

- Gewinde voll ausgeformt
- kleine Ausformtasche (Kralle)
- optimierte Profilhöhe

Vorbohr-Ø zu klein:

- Gewinde überformt
- keine Ausformtasche (Kralle)
- Profilhöhe zu hoch

Beim Gewindeformer ist die Hauptaufgabe des Kühlschmierstoffs die Schmierung. Je mehr Schmierung mit möglichst hohem Fettanteil verwendet wird, um so höher ist der Standweg.


Man unterscheidet zwei Arten von Kühlschmierstoffen:

Nichtwassermischbarer Kühlschmierstoff

Dies sind Mineralöle mit den besten Schmiereigenschaften. Sie setzen die Reibung herab und erzielen die höchsten Standmengen.

Wassergemischter Kühlschmierstoff

Diese emulgierbaren Kühlschmierstoffe werden als Konzentrat vor dem Gebrauch mit Wasser zu Emulsion verdünnt. Hier darf der Fettanteil nicht unter 6% liegen. Ideal ist ein Anteil >12%, um durch eine gute Schmierwirkung eine hohe Standmenge zu erreichen.

Fehler und Schwierigkeiten mit neuen Gewindeformern

Fehler	Ursachen	Gegenmaßnahmen			
1 Gewinde wird zu groß	schlechte Werkzeugspannung Gewindeformer mit kurzem Schneidteil	Synchrofutter verwenden Gewindeformer mit langem Schneidteil verwenden			
2 Gewinde zu gering ausgeformt	Vorbohrdurchmesser zu groß	Kernlochvorbohrdurchmesser nach Tabelle richtig wählen			
3 Gewinde ist überformt	Vorbohrdurchmesser zu klein	Kernlochvorbohrdurchmesser nach Tabelle richtig wählen			
7 1					
4 Gewindeoberfläche unsauber	Materialaufschweißung am Werkzeug Kühlschmiermittel mit zu wenig Fettgehalt	 Fettgehalt im Kühlschmiermittel erhöhen oder Öl verwenden Fettgehalt im Kühlschmiermittel erhöhen oder Öl verwenden 			
R					
5 Standweg zu gering	Kühlschmiermittel mit zu wenig Fettgehalt Vorbohrdurchmesser zu klein Schnittgeschwindigkeit zu hoch Kühlschmierstoff verunreinigt	 Fettgehalt im Kühlschmiermittel erhöhen oder Öl verwenden Kernlochvorbohrdurchmesser nach Tabelle richtig wählen Schnittgeschwindigkeit anpassen Filtration überprüfen 			

Fehler und Schwierigkeiten mit neuen Gewindeformern

Fehler	Ursachen	Gegenmaßnahmen				
6 Werkzeugbruch	Kühlschmiermittel mit zu wenig Fettgehalt Vorbohrdurchmesser zu klein fehlerhafte Werkzeugspannung	 Fettgehalt im Kühlschmiermittel erhöhen oder Öl verwenden Kernlochvorbohrdurchmesser nach Tabelle richtig wählen Werkzeugspannung überprüfen 				

Anwendungsempfehlungen

	Werkstoffgruppe	Werkstoffbeispiele Fettgedruckte Zahlen = Werkstoff-Nr. nach DIN EN 10 027					
Allgemeine Stähle	allgemeine Baustähle	1.0035 S185, 1.0486 P275N, 1.0345 P235GH, 1.0425 P265GH					
≤ 1000 N/mm ²		1.0050 E295, 1.0070 E360, 1.8937 P500NH					
	Automatenstähle	1.0718 11SMnPb30, 1.0736 11SMn37					
		1.0727 46 S20, 1.0728 60 S20, 1.0757 46SPb20					
	unlegierte Vergütungsstähle	1.0402 C22, 1.1178 C30E					
		1.0503 C45, 1.1191 C45E					
		1.0601 C60, 1.1221 C60E					
	unlegierte Einsatzstähle	1.0301 C10, 1.1121 C10E					
Rost- und säurebeständige	rostfreie Stähle geschwefelt	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18 9					
Stähle	rostfreie Stähle austenitisch	1.4301 X5CrNi18-10, 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17 12 2					
	rostfreie Stähle martensitisch	1.4057 X20CrNi17-2, 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18 2					
Hochfeste Stähle	legierte Vergütungsstähle	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4					
800-1200 N/mm²		1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4					
	legierte Einsatzstähle	1.7043 38Cr4					
		1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5					
	Nitrierstähle	1.8504 34CrAl6					
		1.8519 31CrMoV9, 1.8550 34CrAlNi7					
	Werkzeugstähle	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9					
		1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4					
	Schnellarbeitsstähle	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3					
Gusswerkstoffe	Gusseisen	0.6010 EN-GJL-100(GG10), 0.6020 EN-GJL-200(GG20)					
		0.6025 EN-GJL-250(GG25), 0.6035 EN-GJL-350(GG35)					
	Kugelgraphit- und Temperguss	0.7050 EN-GJS-500-7(GGG50), 0.8035 EN-GJMW-350-4(GTW35)					
		0.7070 EN-GJS-700-2(GGG70), 0.8170 EN-GJMB-700-2(GTS70)					
Messing	Messing kurzspanend	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2					
	Messing langspanend	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5					
Langspanende	Aluminium und Al-Legierung	3.0255 Al99,5, 3.2315 AlMgSi1, 3.3515 AlMg1					
Al-Legierungen ≤ 6% Si	Al-Knetlegierungen	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5					
Aluminium und	Al-Gusslegierungen ≤ 10% Si	3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9					
Al-Legierungen ≥ 6% Si	Al-Gusslegierungen > 10% Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg					

Anwendungsempfehlungen

Zugfestigkeit N/mm²	Härte	TG 1	00 U	TG 100 T		TG 100 GG		TG 300 T (Anwendung mit IK)		Former	
			v _c (m/min)		v _c (m/min)		v _c (m/min)		v _c (m/min)		v _c (m/min)
≤500 >500-850		000	10-20	000	10-20	х	-	000	15-25	000	10-20
≤850 850-1000		000	10-20	000	10-20	х	-	000	15-25	000	10-20
≤ 700 700-850 850-1000		000	10-20	000	10-20	х	-	000	15-25	000	10-20
≤750		000	10-20	000	10-20	Х	-	000	15-25	000	10-20
≤850		00	6-10	000	6-15	Х	-	00	6-10	000	4-8
≤850		00	6-10	000	6-15	Х	-	00	6-10	000	4-8
≤850		00	6-10	000	6-15	Х	-	00	6-10	000	4-8
850-1000 1000-1200		00	6-10	000	6-12	х	-	000	10-20	000	6-12
850-1000 1000-1200		00	6-10	000	6-12	х	-	000	10-20	000	6-12
≥850-1000 1000-1200		000	10-20	000	10-20	x	-	000	15-25	000	10-20
≤850 850-1000		00	6-10	000	6-12	×	-	000	10-20	000	6-12
≥650-1000		00	6-10	000	6-12	Х	-	000	10-20	000	6-12
	< 350 HB	0	15-20	0	15-20	000	15-20	000	15-30	х	-
	≤240 HB	0	10-20	0	10-20	000	15-20	000	15-25	0	15-20
	< 350 HB	0	15-20	0	15-20	000	15-20	000	15-30	0	15-20
≤600		Х	-	х	-	000	15-20	000	15-30	00	10-15
≤600		Х	-	Х	-	000	15-20	000	15-30	00	10-15
≤400		000	10-20	000	10-20	Х	-	000	15-25	000	10-20
≤450		000	10-20	000	10-20	Х	-	000	15-25	000	10-20
≤600		00	10-20	00	10-20	000	15-20	000	20-40	000	10-20
≤600		00	10-20	00	10-20	000	15-20	000	20-40	Х	-

OOO optimal

OO gut geeignet

O geeignet

x nicht geeignet

Unser Programm:

FU 500/FN500

INOX-Bohrer

Kleinstbohrer

TS-Drills

Highlights

Tieflochbohrer

Multiplex

Multiplex HPC

Lieferprogramm

TM-Werkzeug-Ausgabesysteme

VHM Hochleistungs-Fräswerkzeuge

Hartner GmbH

Postfach 10 04 27, D-72425 Albstadt Tel. 0 74 31/1 25-0, Fax 0 74 31/1 25-21 547