

Precision Cutting Tools

Solid carbide de-burring tools

for entry and exit New: Front/back de-burrer TS 100 VR 2010

HARTNER

A first for internal de-burring: Carbide tools

Hartner's carbide tools for entry and exit de-burring operations are setting the benchmark for automatic de-burring. This, however, does not involve machining in the fullest sense of the word - as with, for example, conventional drills, milling cutters, taps, reamers and countersinks. Instead, the deburring tool very carefully shaves off the burr and can also, if required, create a chamfer.

For the quality of a workpiece – especially with intersecting and cross holes – then de-bur-ring of the back of hole is gaining more and more importance. This applies to, for example, oil galleries in modern high performance engines, where an optimal flow rate is dependent on perfect de-burring of the back of the hole. Highly accurate de-burring and producing a chamfer is also increasingly required in crankshafts, valve blocks, steering arms, rotational housings, drive elements, injector nozzles and brake cylinders.

Whilst the de-burring of the entry to the hole hardly causes a problem, the de-burring of through holes in many cases involves an extensive operation that is often carried out manually and is time and cost intensive.

With the newly developed and patented carbide tools for exit de-burring, Hartner is providing the possibility to automate and rationalise this production step applying high performance tools. There is a choice of three solutions:

- 1. De-burring fork TS 100 EG standard tool
- 2. Front/back de-burrer TS 100 VR as standard tool
- 3. De-burring spiral TS 100 ES semi-standard tool

This not only means a considerable cost and time saving for the production, but also, more importantly, improved quality and process reliability.

Solid carbide de-burring spiral TS 100 ES

Exit of through hole prior to ...

...and following machining with de-burring fork.

W HARTNER De-burring fork TS 100 EG

Advantages:

• cost saving. The standard tool offers outstanding price advantages in comparison with special tooling.

cutting edges

- universal tooling for milling, turning and robotic applications. The range of 0.25 mm enables the application of our de-burring fork in holes with large tolerances. Reducing set-up time and cost!
- increased production. De-burring fork TS 100 EG de-burrs automatically with one set-up and short cycle times. Expensive and extensive manual operations are no longer required.

Operation

Please note when machining workpieces with cross-holes: - the diameter of the cross-hole must be maximal 35% of the central hole the diameter of the cross-hole must be 40% length the diameter of the cross-hole must be 40% length the diameter of the cross-hole must be 40% length the diameter of the cross-hole must be 40% length the diameter of the cross-hole must be 40% length the diameter of the cross-hole must be 40% length to a set of the cross-hole must be an excepter of the cross-hole must be accessed by the crossed by the crosse

– the diameter of the cross-hole must be 40% larger than the cutting length ${\rm I_6}$

2. example Workpiece with multi-interrupted cut

Step by step:

The automatically internal and external de-burring with deburring fork TS 100 EG is an easy and cost saving alternative to common, extensive manual operations. Just one tool is required for all machining steps.

de-burring back of hole

de-burring front-face

feed to cross-hole

Universal application:

The ex-stock de-burring fork machines workpieces with one cross-hole as well as workpieces with multi-interrupted cut and produces high quality de-burred faces and ends of the hole.

Ø range (mm)	v _c m/min	fu (mm)
< Ø 4	8 - 10	0.1 - 0.2
Ø 4 - < Ø 6	10 - 14	0.1 - 0.2
6 - Ø 8	14 - 20	0.1 - 0.2

Important:

Please note, that the cutting parameters are recommendations. They can be adapted to higher and lower cutting parameters. Ø

HARTNER

De-burring fork TS 100 EG - standard range

with a sping in a special coated to be a special of the speci	traight sha collet hold dimension tools on re	ank for clam- lers as and equest	84100 Solid carbide Hartner std. K O TS 100 EG 120				
nom. Ø	====== - d1 mm	I1 for Ø range mm	Availability				
2,000	1,900	1,91 - 2,15	80,00	1,00	2,05	0,35	•
2,250 2,500	2,100 2,400	2,16 - 2,40 2,41 - 2,70	80,00 80,00	1,50 1,50	2,60 2,90	0,40 0,40	•
2,750 3,000	2,600 2,900	2,71 - 2,90 2,91 - 3,25	90,00 90,00	1,50 2,00	2,95 3,65	0,45 0,45	•
3,500	3,200	3,26 - 3,60	90,00	2,00	3,80	0,60	
4,500	4,200	4,26 - 4,75	90,00	2,50	4,60	0,70	
5,000	4,700 5,200	4,76 - 5,30 5,31 - 5,80	100,00	2,50	4,85 4,85	0,75	•
6,000 6,500	5,600 6,000	5,81 - 6,20 6,21 - 6,70	110,00 110,00	3,00 3,00	5,80 5,90	0,80 0,90	•
7,000 7,500	6,500 6,900	6,71 - 7,10 7,11 - 7,60	110,00 110.00	3,00 3,50	5,85 6,95	0,85 0,95	
8,000	7,300	7,61 - 8,05	110,00	3,50	7,00	1,00	

Obright

Ø

HARTNER

De-burring fork TS 100 EG - standard range

 with re-inforced plain shank to Order no. DIN 6535 HA for clamping in Tool material hydraulic chucks and shrink fit Standard chucks special dimensions and Carbide grade coated tools on request Surface Type Discount group 								84101 Solid carbide Hartner std. K TS 100 EG 120		
	d2	I3		/ - I ₂						
nom. Ø	d1	for Ø range	d2	1	12	13	14	19	h1	Availability
mm 2,000	mm 1,900	mm 1,91 - 2,15	mm 6,000	mm 120,00	mm 69,00	mm 36,00	mm 1,00	mm 2,05	mm 0,35	
2,250	2,100	2,16 - 2,40	6,000	120,00	69,00	36,00	1,50	2,60	0,40	•
2,500	2,400	2,71 - 2,90	6,000	130,00	79,00	36,00	1,50	2,90	0,40	
3,000 3,500	2,900 3,200	2,91 - 3,25 3,26 - 3,60	6,000 10,000	130,00 135,00	79,00 80,00	36,00 40,00	2,00 2,00	3,65 3,80	0,45 0,60	•
4,000	3,600	3,61 - 4,25	10,000	135,00	80,00	40,00	2,00	4,10	0,70	
4,500 5,000	4,200	4,20 - 4,75 4,76 - 5,30	10,000	145,00	80,00	40,00	2,50	4,60	0,70	•
5,500 6.000	5,200 5.600	5,31 - 5,80 5,81 - 6,20	10,000 10.000	145,00 155.00	90,00 90.00	40,00 40.00	2,50 3.00	4,85 5.80	0,75 0.80	
6,500	6,000	6,21 - 6,70	16,000	165,00	102,00	48,00	3,00	5,90	0,90	
7,000 7,500	6,500 6,900	6,71 - 7,10 7,11 - 7,60	16,000 16,000	165,00 165,00	102,00 102,00	48,00 48,00	3,00 3,50	5,85 6,95	0,85 0,95	•
8,000	7,300	7,61 - 8,05	16,000	165,00	102,00	48,00	3,50	7,00	1,00	•

Obright

HARTNER

Solid carbide de-burring spiral TS 100 ES - semistandard range

For exit de-burring through the central hole, Hartner has developed the solid carbide de-burring spiral TS 100 ES. The slotted tool is available as a semi-standard tool with immediate effect, i. e. inside the diameter ranges specified in the adjacent table tools can be supplied in one-hundredth increments with the respective shank and length dimensions as well as number of cutting edges with short delivery times and at favourable prices. In addition, at any time other customer specific solutions as special tools, for example, with further reach or other shank diameters.

The principle of function of the de-burring spiral TS 100 ES is based on the pre-tension of the grooved cutting portion. In the area of the cutting portion, the de-burring spiral has a fractionally larger diameter than the bore to be machined. Through the run-on, the grooved cutting portion is pressed together on entry into the hole to be machined and thereby pre-tensioned. The pre-tension ensures that inside the bore and especially in the area of the cross-hole to be de-burred there is a perfect fit of the cutting spiral at the wall of the bore or the edges of the cross-hole respectively. The burr in the cross-hole is subsequently accurately and cleanly peeled off at the root. Thereby very small chips are created that can be evacuated problem-free from the hole.

Pre-requisite for the development of the de-burring spiral TS 100 ES was a carbide as tool material that possesses an accordingly low rigidity and permits the necessary deformation in the cutting edge area. Thanks to Hartner's carbide expertise in development and production, then a carbide with such special attributes is available.

Cutting parameters de-burring spiral

Ø range (mm)	v _c m/min	fu (mm)
< Ø 8	15 - 25	0.2 - 0.3
≥ Ø 8	15 - 25	0.4 - 0.8

Important:

Please note, that the cutting parameters are recommendations. They can be adapted to higher and lower cutting parameters.

Principle of function

W HARTNER

Solid carbide de-burring spiral TS 100 ES - semistandard range

5555	-						1
		_			Solutions	s for extremely deep holes	
 Re-inforced s HA or extra le extremely de special dime coated tools request form 	shank ength ep ho nsion on re page	to DIN 65 shank for oles s and quest 10	535	Semistandard Solid carbide Hartner std. K O TS 100 ES 120			
			 - I1	== <u>-</u>			
Dimensions d1 from to 1/100 increments	14	Long version	n I2	Short versio	n I2	Shank d2 h6	Availability
mm	mm	mm	mm	mm	mm	mm	
3.00 - 4.10 4.11 - 6.10 6.11 - 8.10	12 12 16	68.00 76.00 101.00	40 40 65	76.00	40	4.00 6.00 8.00	on request on request on request
8.11 - 10.10 10.11 - 12.10 12.11 - 14.10	19 19 22	101.00 130.00 130.00	85 85	76.00 80.00 80.00	36 35 35	12.00 14.00	on request on request on request
14.11 10.10		100.00	102	00.00	72	10.00	

Obright

Front/back de-burrer TS 100 VR

Hartner's solid carbide TS 100 VR front/back de-burrer with TiAIN-coating as a standard tool enables de-burring as well as chamfering of hole entry and exit with a 90° angle.

TS 100 VR possesses a milling head with a front and back cutting region. To de-burr or chamfer the tool performs a circular milling movement along the hole edge or contour.

Cutting parameters front/back de-burrer TS 100 VR

Material group	Tens. strength Hard- MPa (N/mm ²) ness	v _c (m/min)	Feed col. no.
Steels	< 850	120 - 200	71
	850-1200	100 - 180	71
	> 1200	80 - 140	71
Hardened steels	< 54 HRC	60 - 120	71
	54-60 HRC	40 - 80	71
Stainless/acid-resistant steels	< 850	80 - 120	71
Nickel-based alloys	< 1300	30 - 60	71
Ti-alloys	< 1300	50 - 100	71
Cast materials	< 240 HB30	120 - 180	72
	> 240 HB30	100 - 160	72
Al wrought alloys < 3% Si		150 - 250	72
Al cast alloys > 3% Si		100 - 200	72
Magnesium alloys		150 - 250	72
Non-ferrous alloys	< 850	30 - 200	72

Feed column no. (mm/rev.)

Ø	71	72
≤ 3.00	0.060	0.080
4.00	0.100	0.125
5.00	0.100	0.125
6.30	0.125	0.160
8.00	0.160	0.200
10.00	0.200	0.250
12.50	0.200	0.250

Important:

Please note, that the cutting parameters are recommendations. They can be adapted to higher and lower cutting parameters. *Q*

HARTNER

Front/back de-burrer TS 100 VR - standard range

🔘 bright

\ ₩ HARTNER

Solid carbide de-burring spiral TS 100 ES semistandard

Fax Inquiry / Order simply photo-copy, complete and fax...

	Inquiry	🗅 Or	der			Repea	at or	der, no. of initial o	rder
$\frac{1}{14}$	Number require	ed:	//		ite	ms	łole Ø _	Tolerance	
Dimensions d1 from to 1/100 incrementsHLength long versionLength short versionShank d2 h6III2I1I2mmmmmmmmmm3.00 - 4.101268.00404.00		I4 The production Ø Shank Ø and lengt	l2 d1 of ths are	the de-burri dependent	I1 C	long al is determ	short ined by Ø and t	the hole Ø of the component he table below.	d2 h6
Information Information Information Information mm mm mm mm mm mm 3.00 - 4.10 12 68.00 40 4.00		Dimensions d1 from to	14	Lengtl long vers	h sion	Lengt short ver	h sion	Shank d2 h6	
3.00 - 4.10 12 68.00 40 4.00		mm	mm	mm	mm	mm	mm	mm	
		3.00 - 4.10	12	68.00	40			4.00	
4.11 - 6.10 12 76.00 40 6.00 6.11 - 8.10 16 101.00 65 76.00 40 8.00		4.11 - 6.10 6.11 - 8.10	12 16	76.00 101.00	40 65	76.00	40	6.00 8.00	
8.11 - 10.10 19 101.00 61 76.00 36 10.00 10.11 - 12.10 19 130.00 85 80.00 35 12.00		8.11 - 10.10	19 19	101.00	61 85	76.00	36 35	10.00	
12.11 - 14.10 22 130.00 85 80.00 35 14.00		12.11 - 14.10	22	130.00	85	80.00	35	14.00	
14.11 - 16.10 22 150.00 102 90.00 42 16.00		14.11 - 16.10	22	150.00	102	90.00	42	16.00	
							<u> </u>		
Company: Company stamp:	Company:						- Co	mpany stamp:	
	company						00	pany oranipi	
Telephone/fax:	Telephone/fax:						_		
Contact: Signature:	Contact:						_ Sig	nature:	

Special solutions

Fax Inquiry / Order simply photo-copy, complete and fax								
Inquiry	Order	🗅 Repe	eat order, no. of	initial order				
 TS 100 EG Please recommend t for the application as 	□ TS 100 N the optimal tool s per description.	/R 🗆 '	TS 100 ES					
Drawing of lay-out								
Machining: Workpiece:	De-burring Entry Milling Hole Ø:mm Cross-hole:		<pre></pre>	<pre>Cross-hole Exit, angle° mm </pre>				
Maashina turaa	Material/design	ation:		- athere				
Shank:	Maschine type: U Machining centre			u others:				
Coolant:	□ internal	external						
	🗆 Oil	Soluble oil						
	Pressure:	bar	Quantity:	I/min				
Company: Telephone/fax:			Company stamp:					
Contact:			Signature:					

Our programme:

FU 500/FN500

INOX Drills

Micro Precision Drills

Gun Drills

Standard Solid Carbide De-burring Tools

Multiplex

TS-Drills

Multiplex HPC

Highlights

Special Drills

Standard Range

TM Vending Machines

Hartner GmbH

www.hartner.de

P.O. Box 10 04 27, D-72425 Albstadt Tel. +49 74 31/1 25-0, Fax +49 74 31/1 25-21 547

119 227/1007-IX-15 No liability can be accepted for printing errors or technical changes of any kind. Our Conditions of Sale and Terms of Payment apply. Available on request.