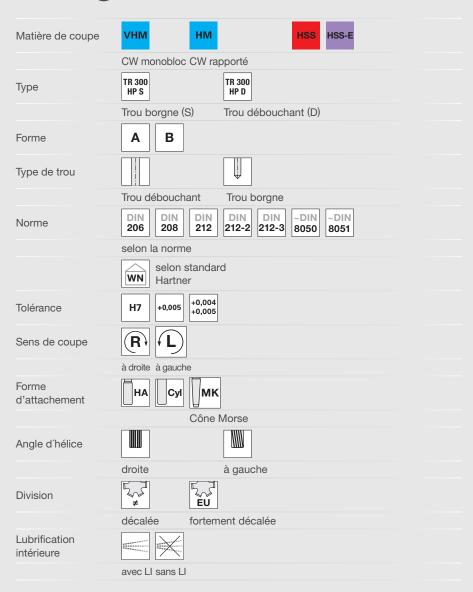


PROGRAMME D'ALESOIRS

LE NOUVEAU PROGRAMME COMPLET D'ALESOIRS | TR 300 HP - ALESOIRS HAUTE PERFORMANCE | ALESOIRS MACHINE CW ET HSS-E | ALESOIRS A MAIN



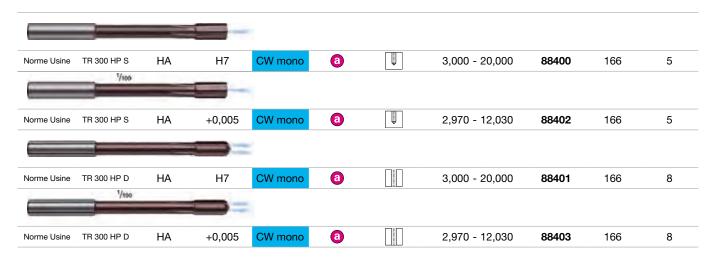
Code ISO

Р	aciers, aciers hautement alliés
М	aciers inoxydables
K	fontes grises, fontes à graphite sphéroïdal et fontes malléables
N	aluminiums et autres non ferreux
S	alliages de titane, supérieurs et spéciaux
Н	aciers trempés et fontes trempées

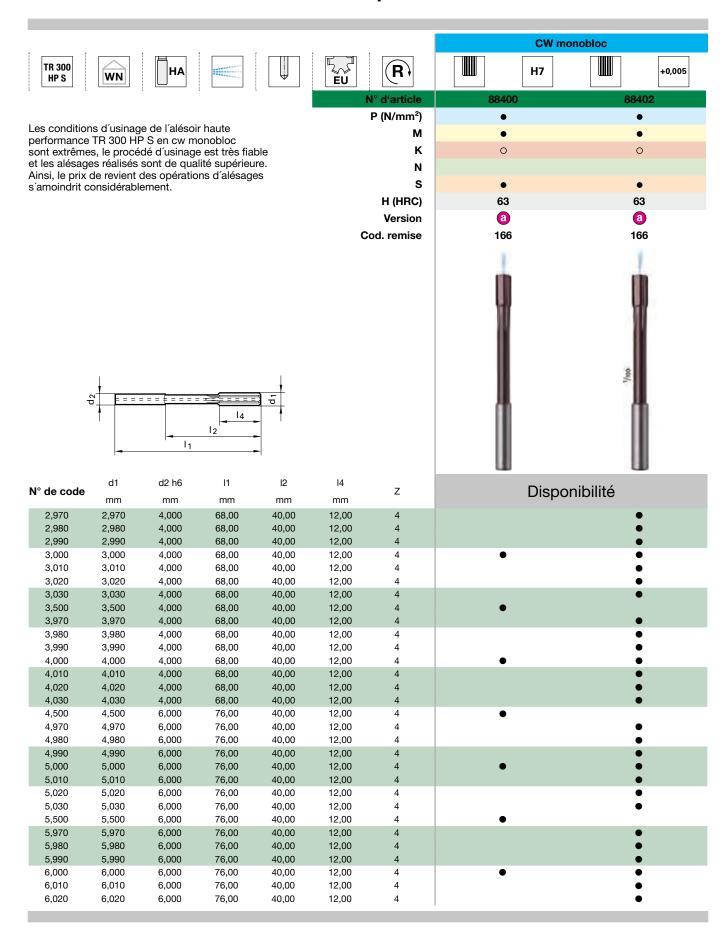
Pictogrammes

Valeur optimale du diamètre de perçage avant l'alésage :

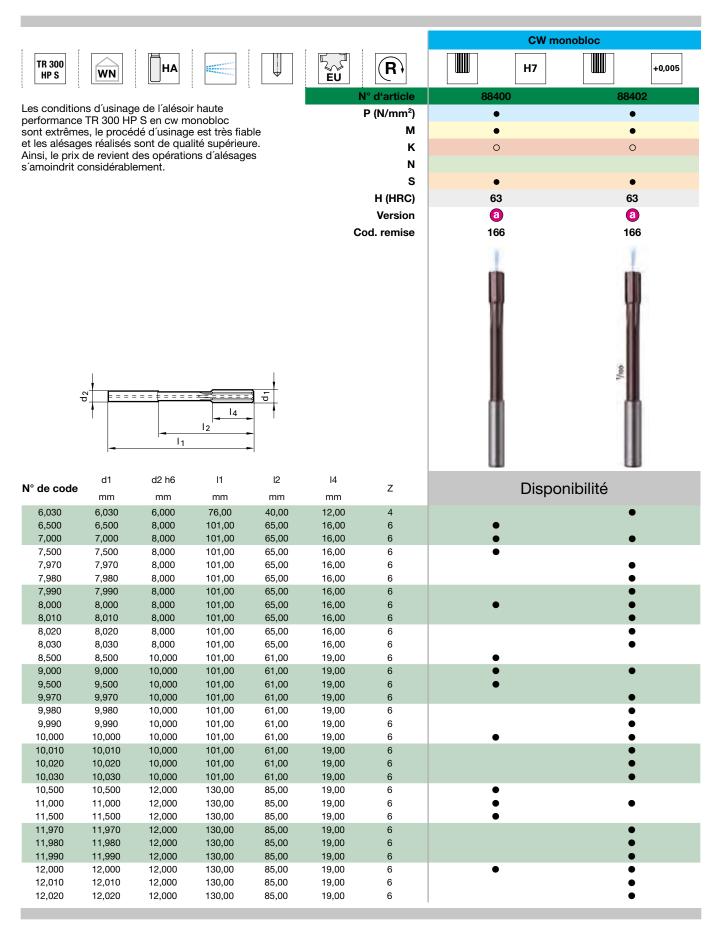
Surépaisseurs recommandées, en mm			jusqu'à Ø6	jusqu'à Ø10	jusqu'à Ø16	jusqu'à Ø25	jusqu'à Ø40	dessus Ø40
tous matériaux			Ø 0,1-0,2	Ø 0,2	Ø 0,2-0,3	Ø 0,3	Ø 0,3-0,4	Ø 0,4-0,5
agiar trompá	Н	jusqu'à 48 HRC	Ø 0,1-0,2	Ø 0,2	Ø 0,2	Ø 0,2	Ø 0,3	Ø 0,3
acier trempé	П	jusqu'à 63 HRC	Ø 0,1	Ø 0,1	Ø 0,1-0,2	Ø 0,2	Ø 0,2	Ø 0,2

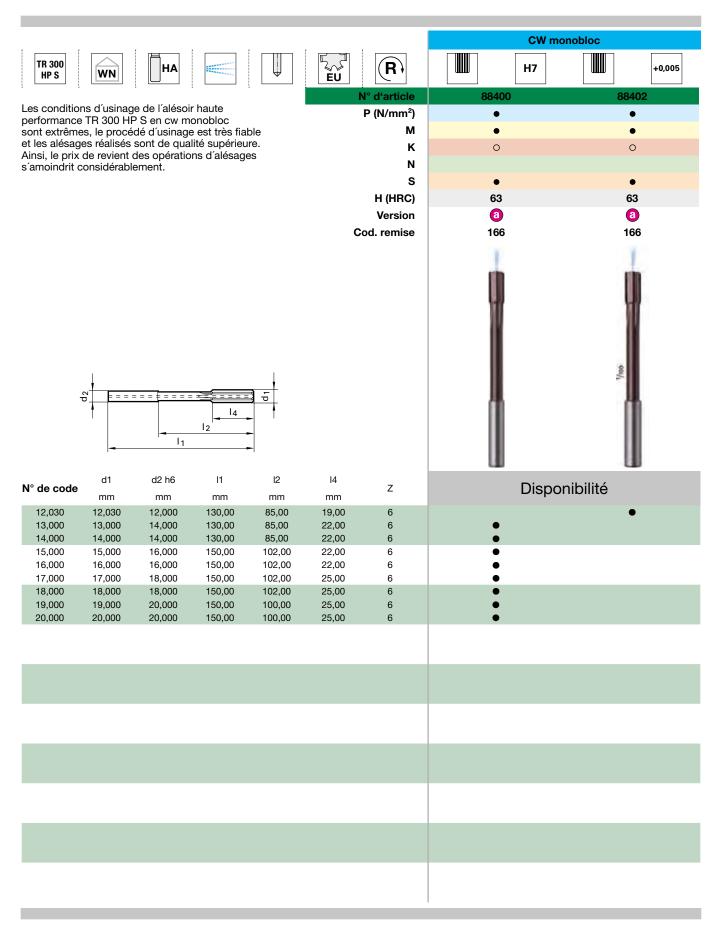

CARACTÉRISTIQUES TECHNIQUES

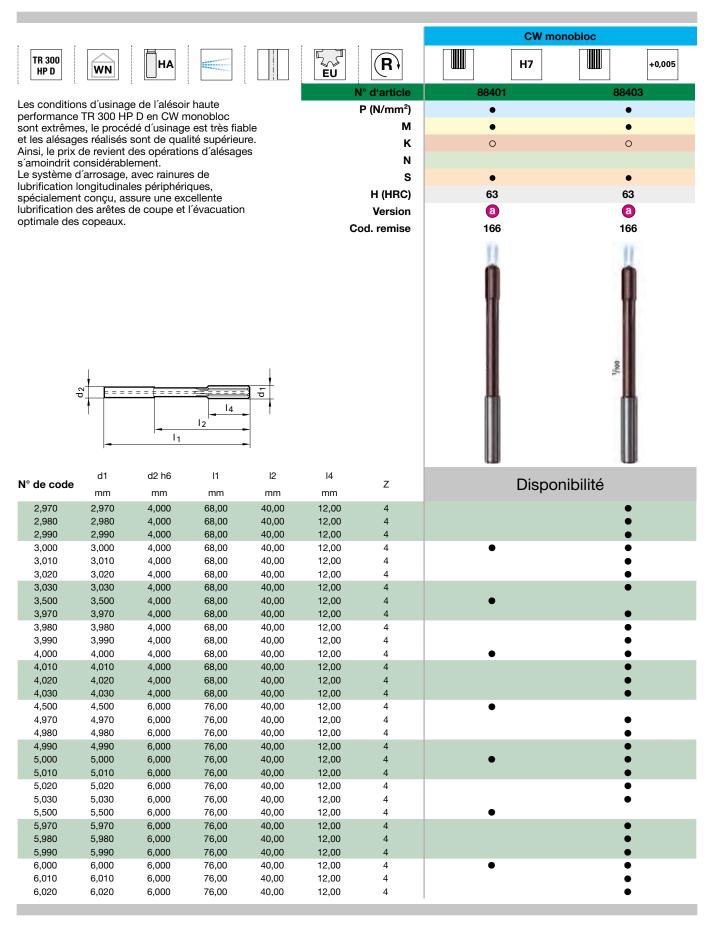
▼ PAGE 36

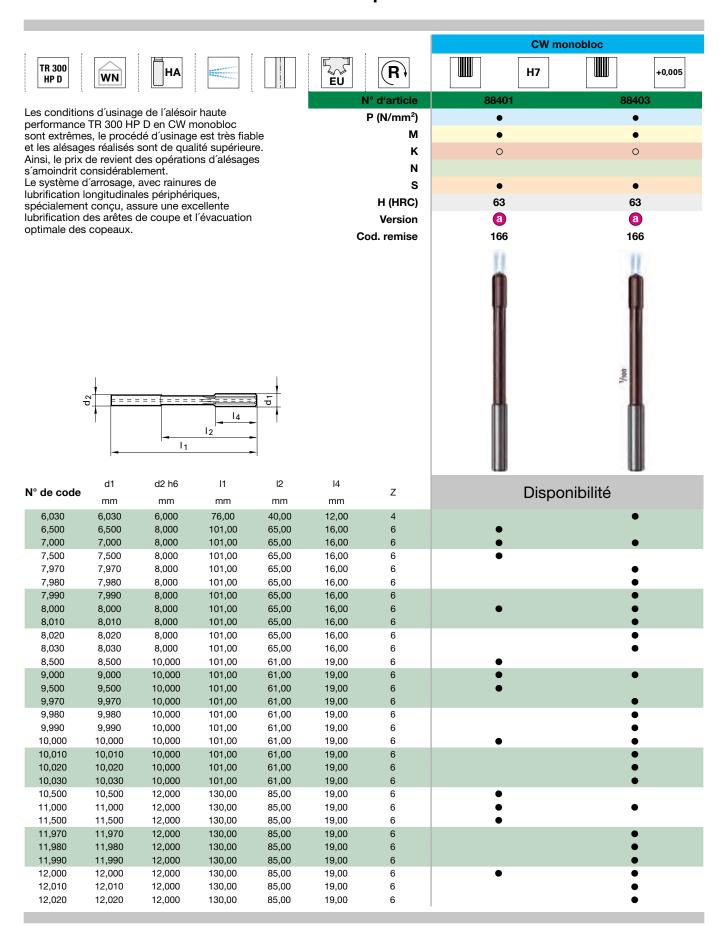


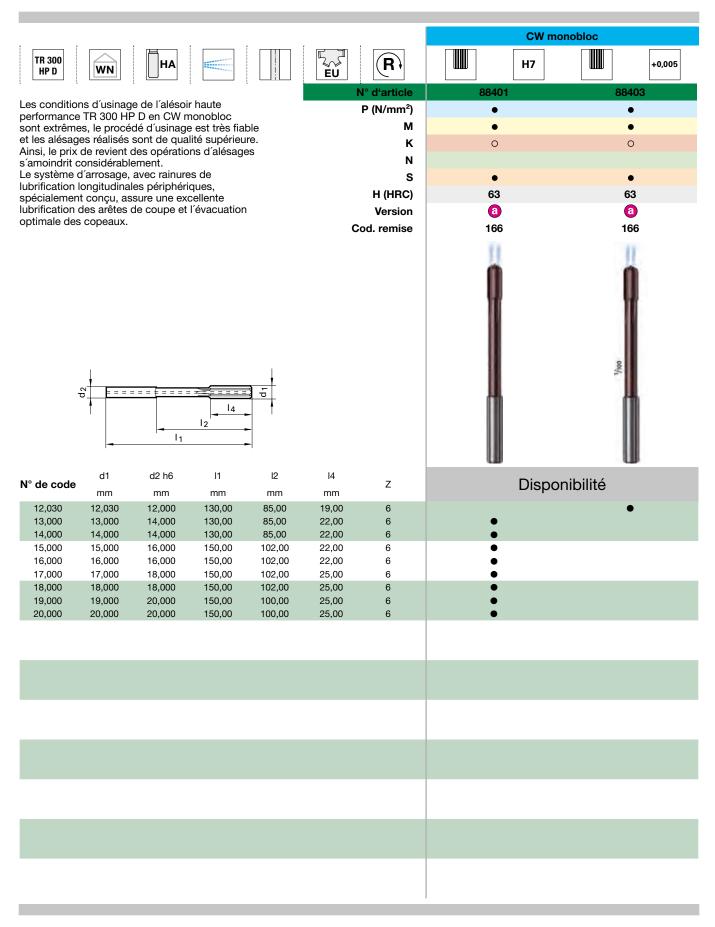
Norme	Type	Forme d'att.	Tolérance	Matière de coupe	Version	Type de trou	d1	N° d'article	Cod. remise	Page

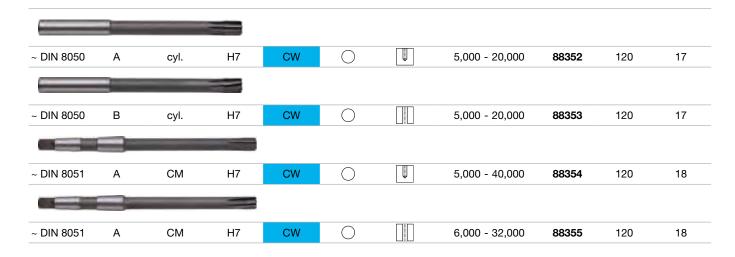




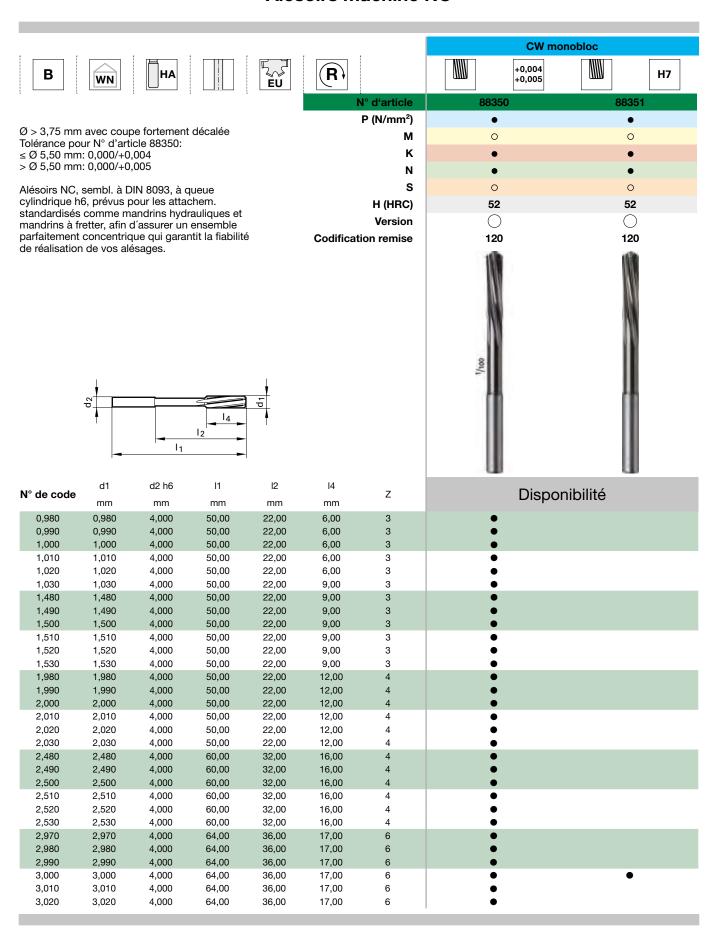

a AlTiN nano



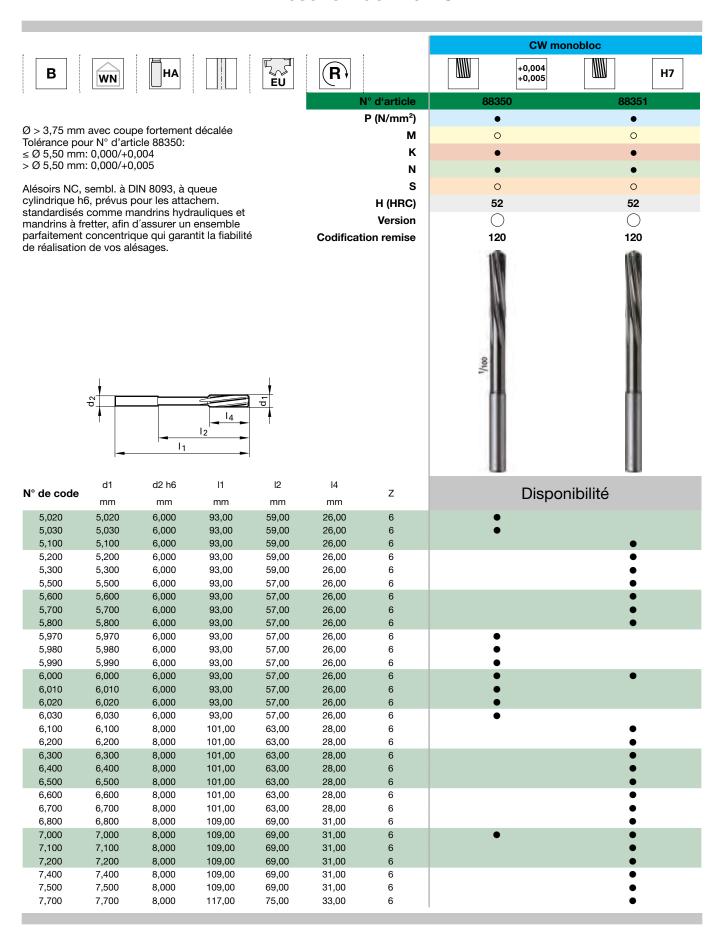




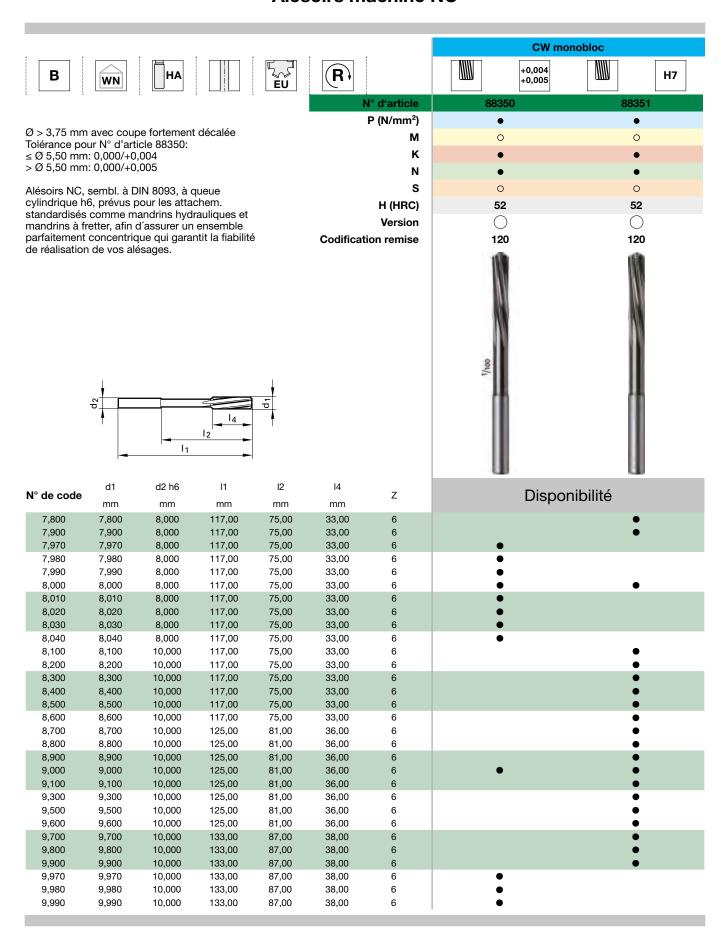
Norme	Forme	Forme d'att.	Tolérance	Matière de coupe	Version	Type de trou	d1	N° d'article	Cod. remise	Page

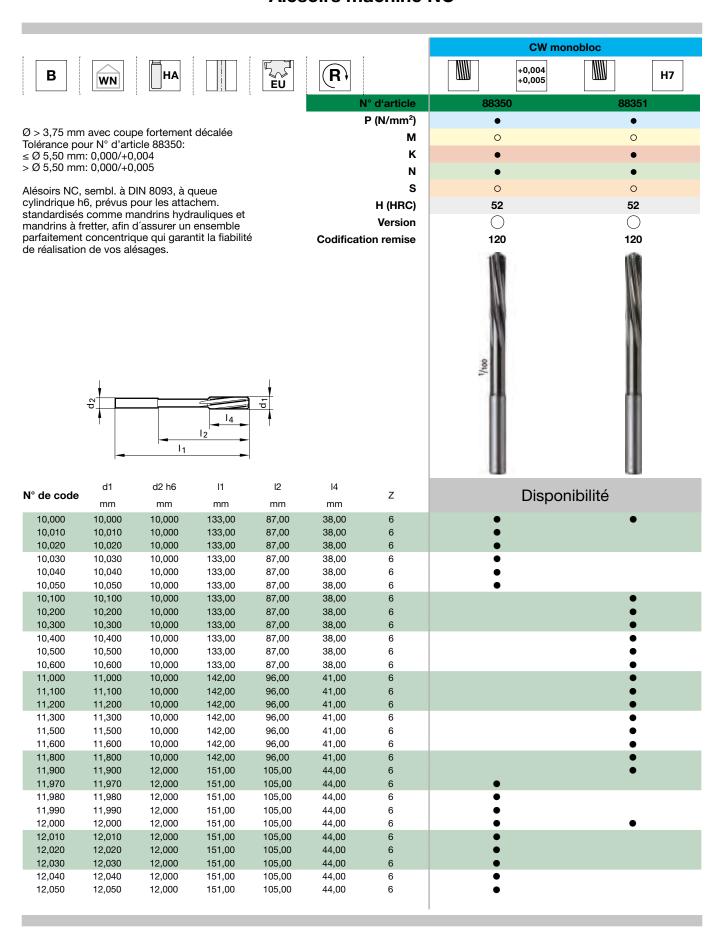

Alésoirs machine NC

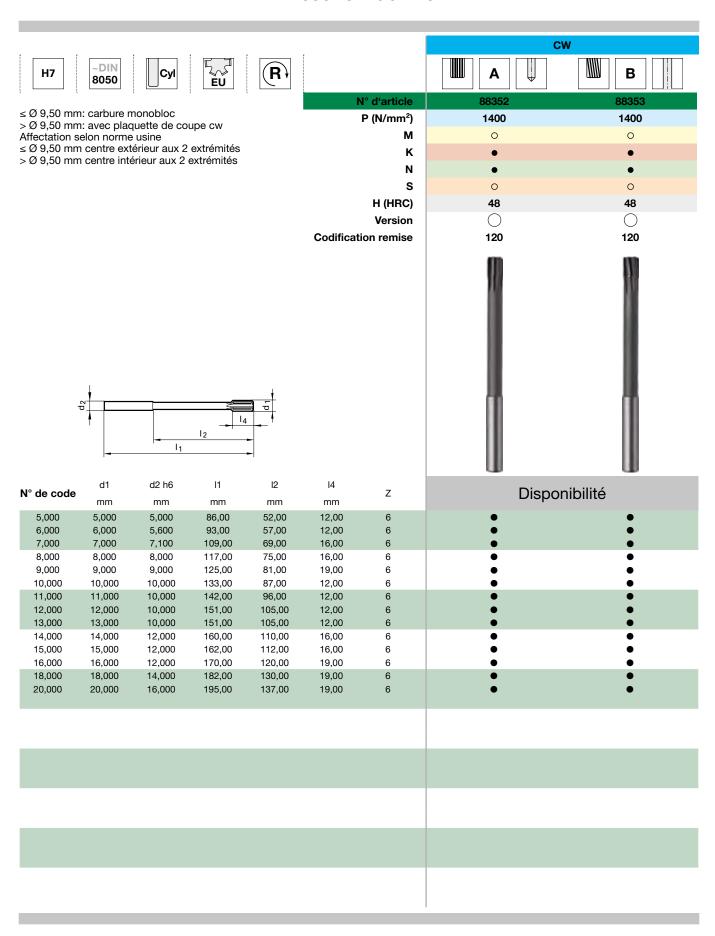
Alésoirs machine

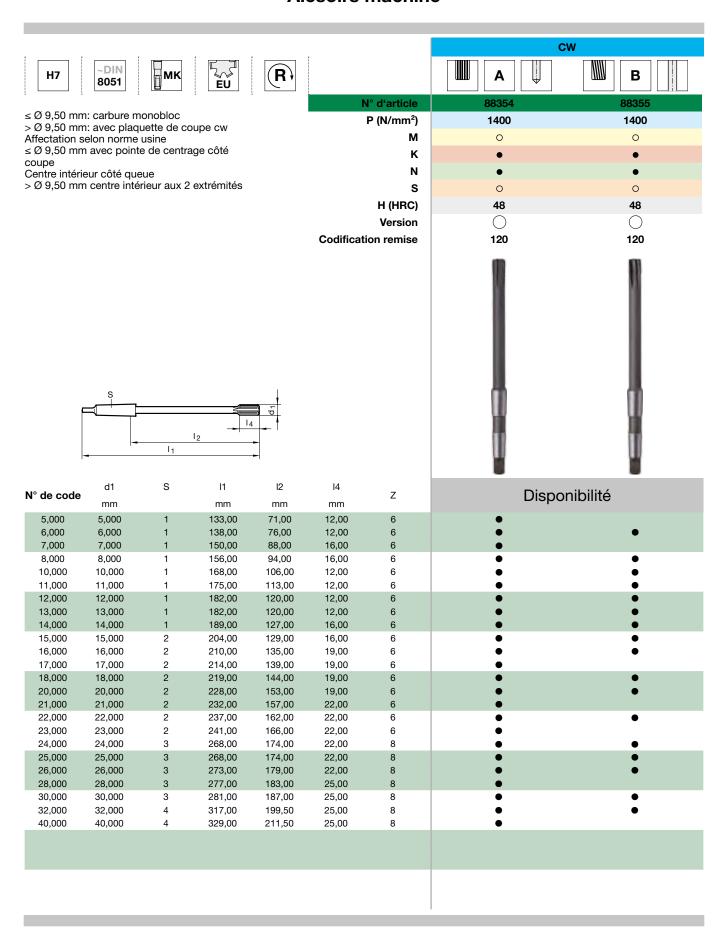


poli

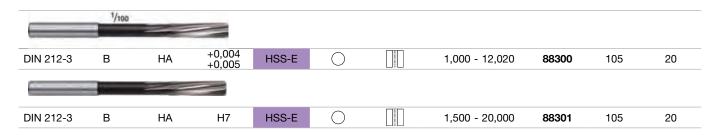


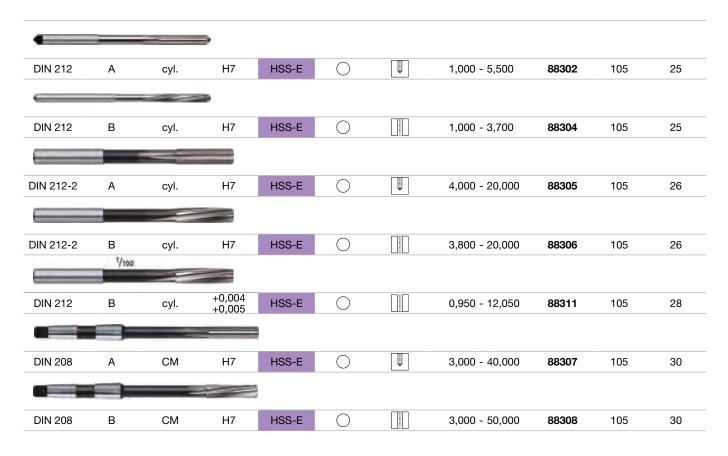




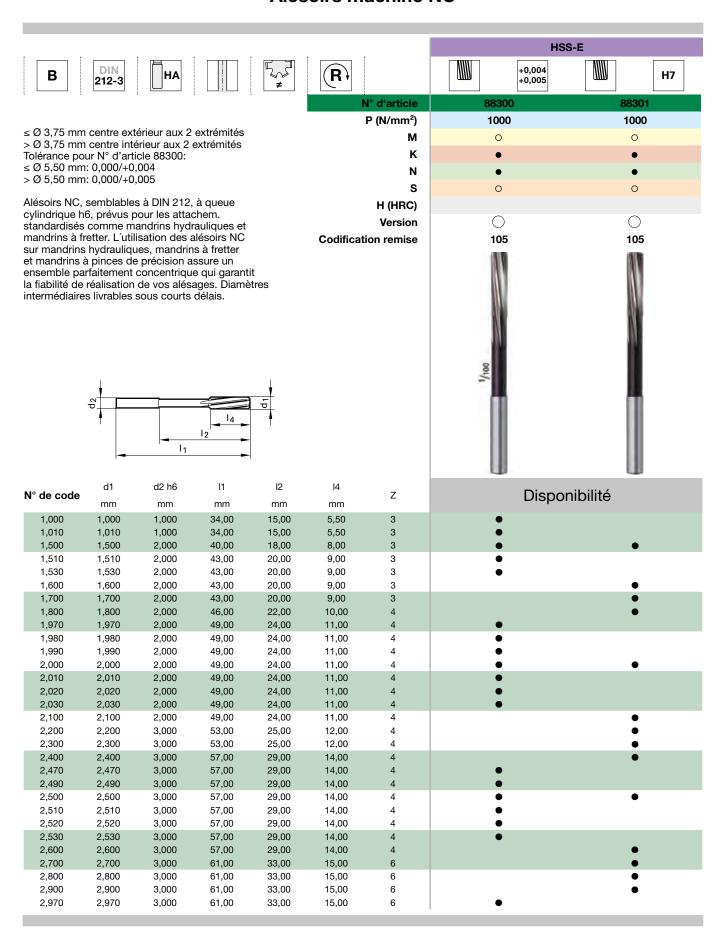


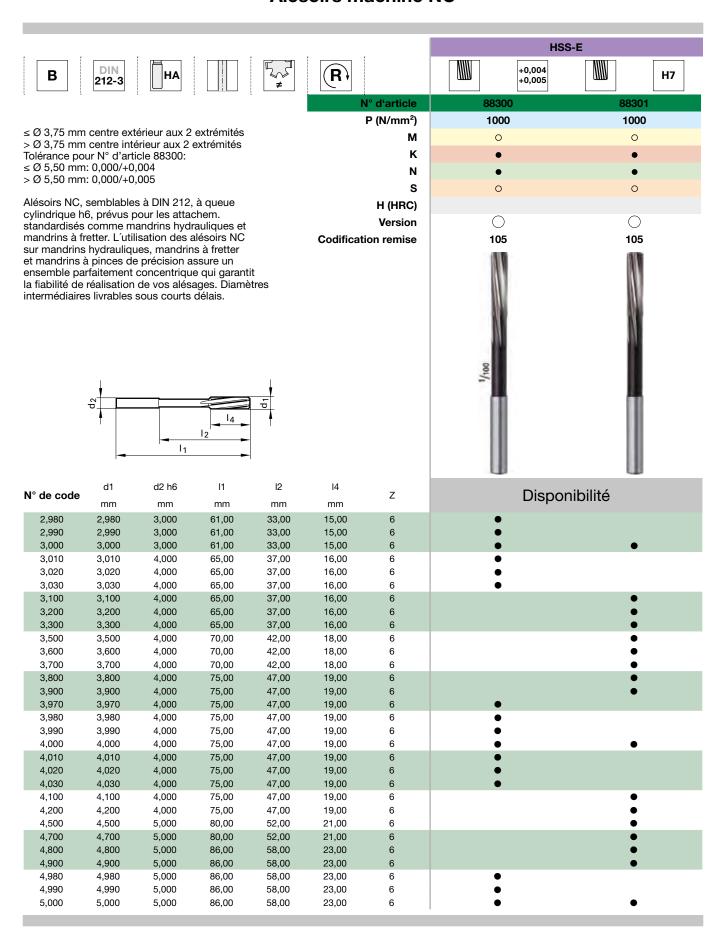
poli

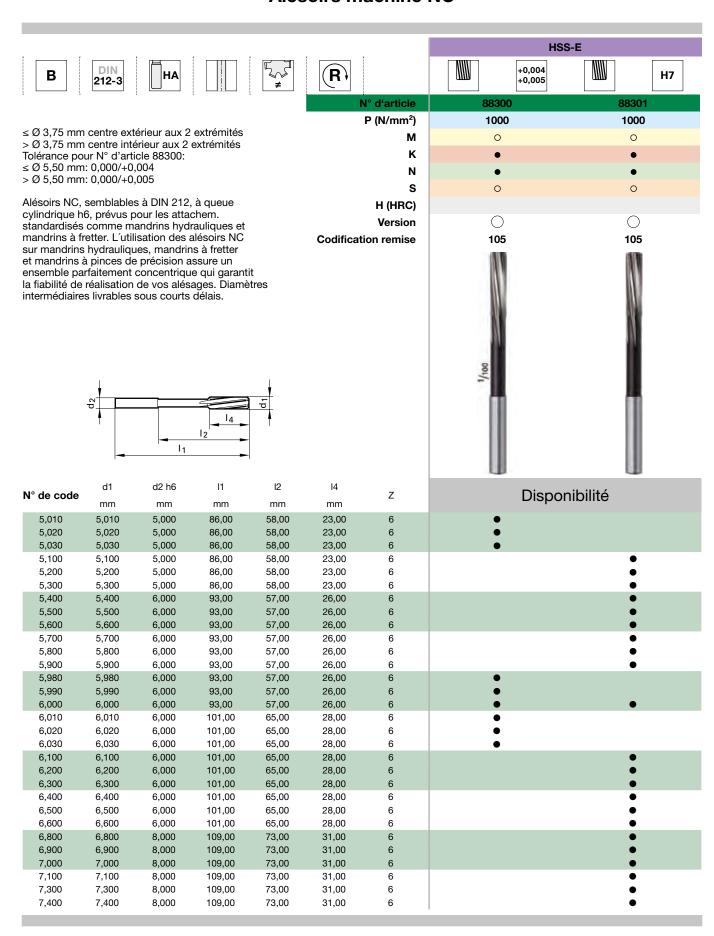


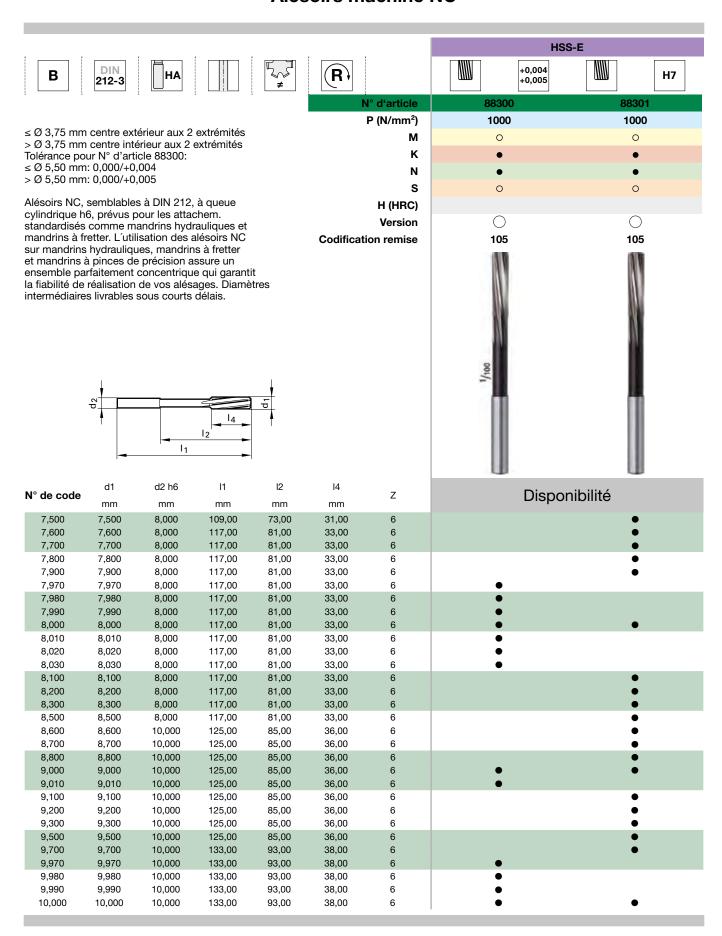

Alésoirs machine HSS-E

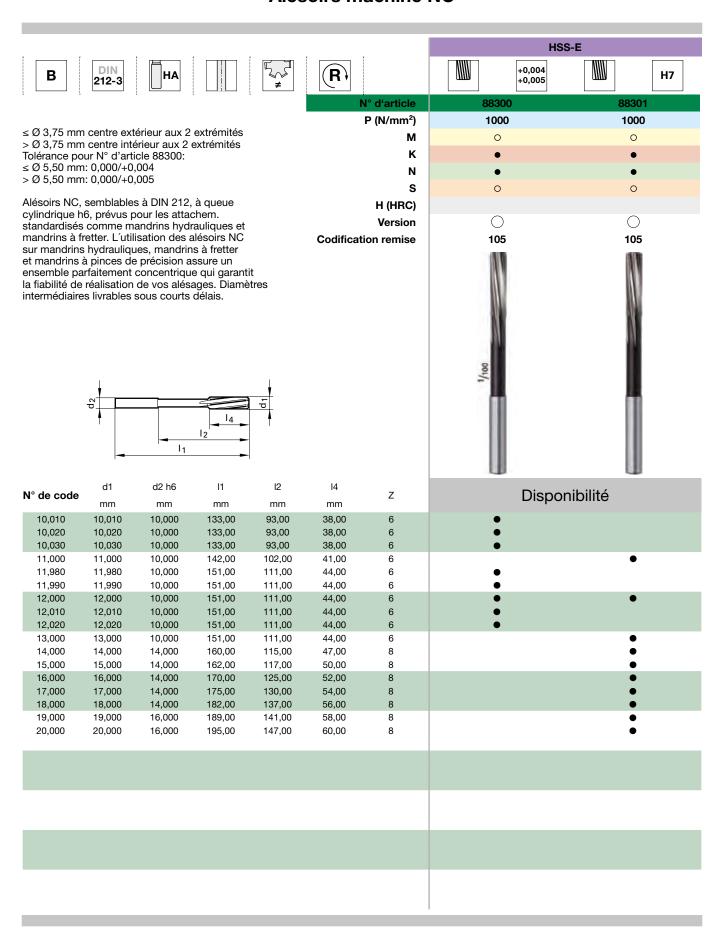
Norme	Forme	Forme d'att.	Tolérance	Matière de coupe	Version	Type de trou	d1	N° d'article	Cod. remise	Page

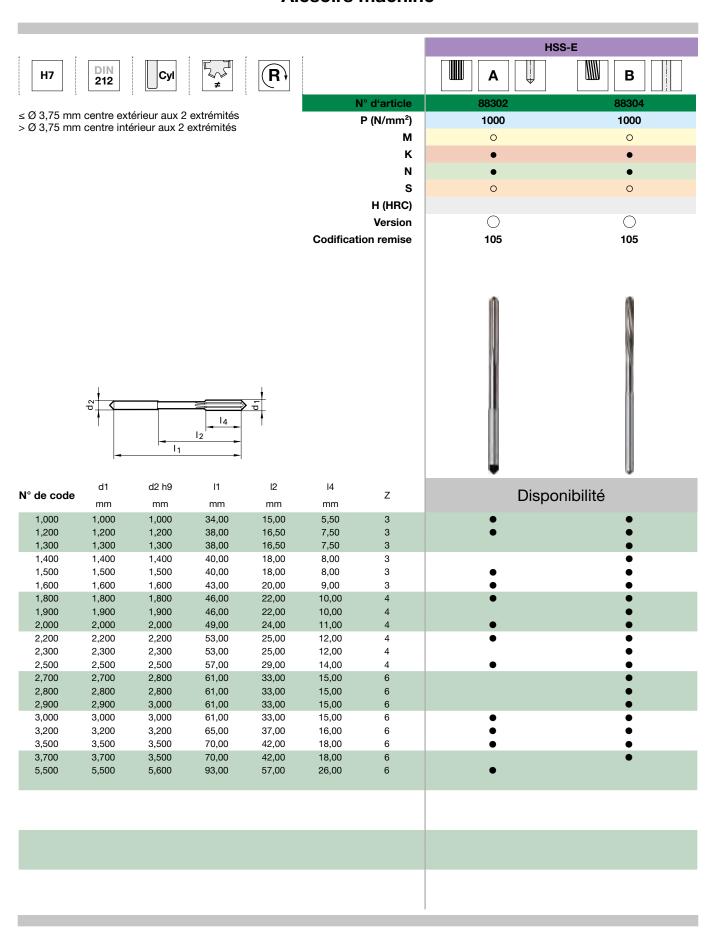

Alésoirs machine NC

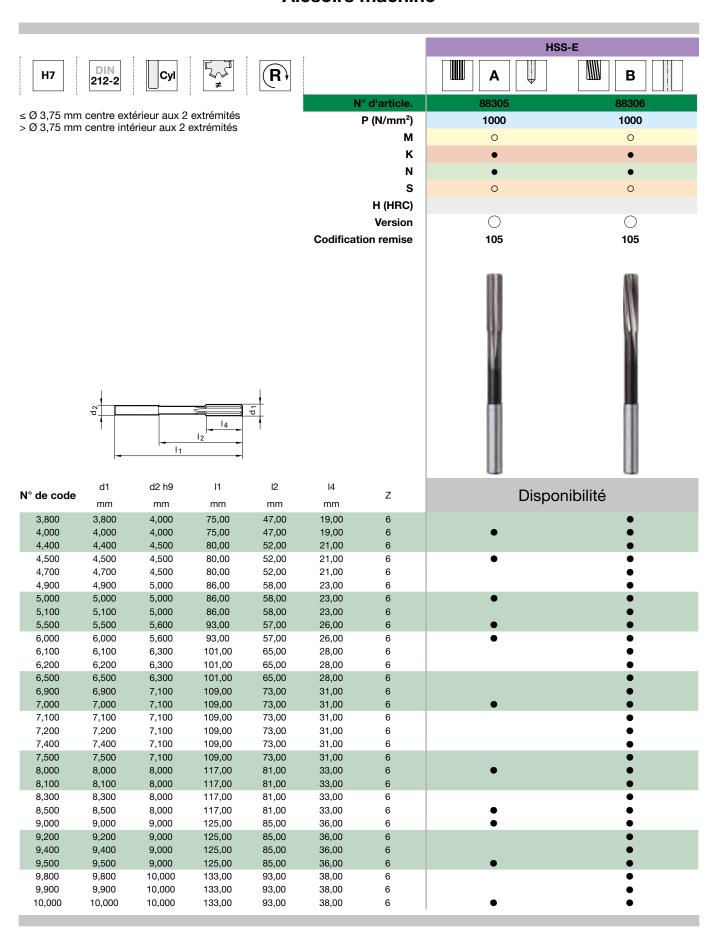

Alésoirs machine

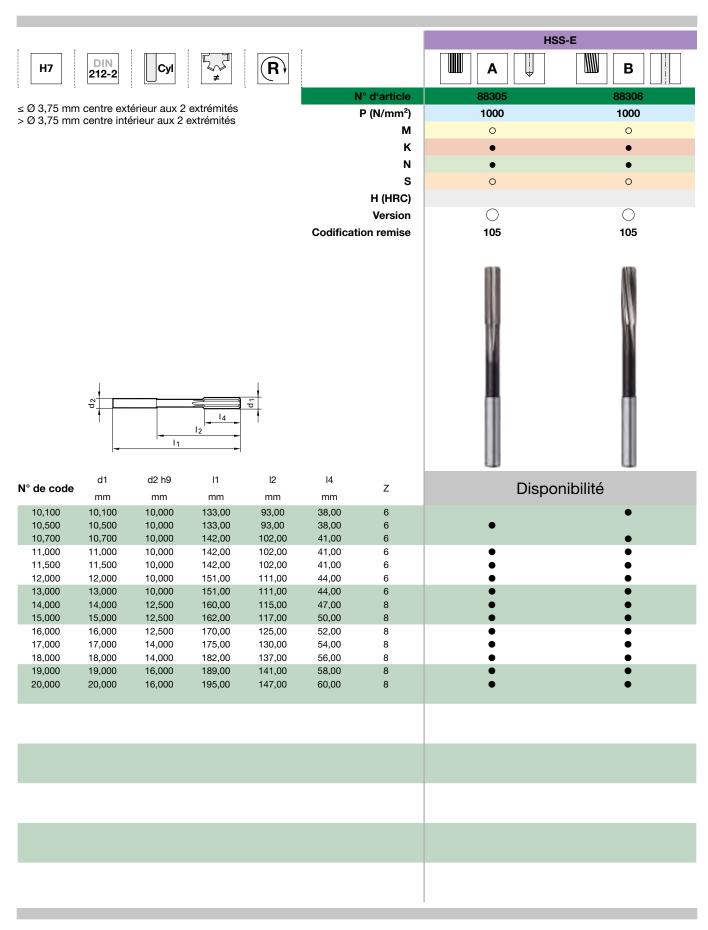


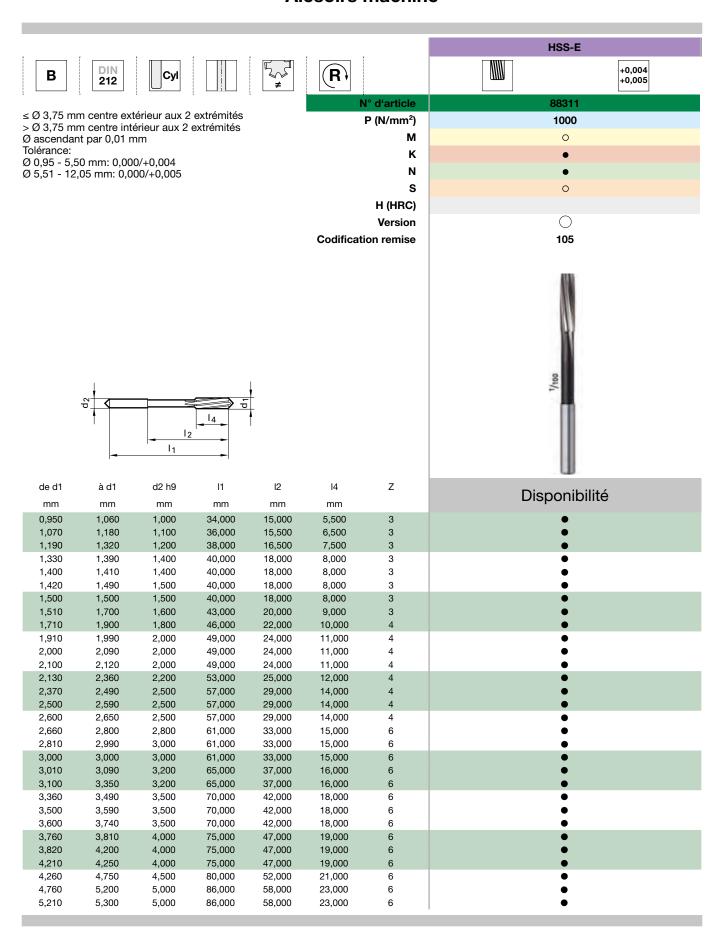


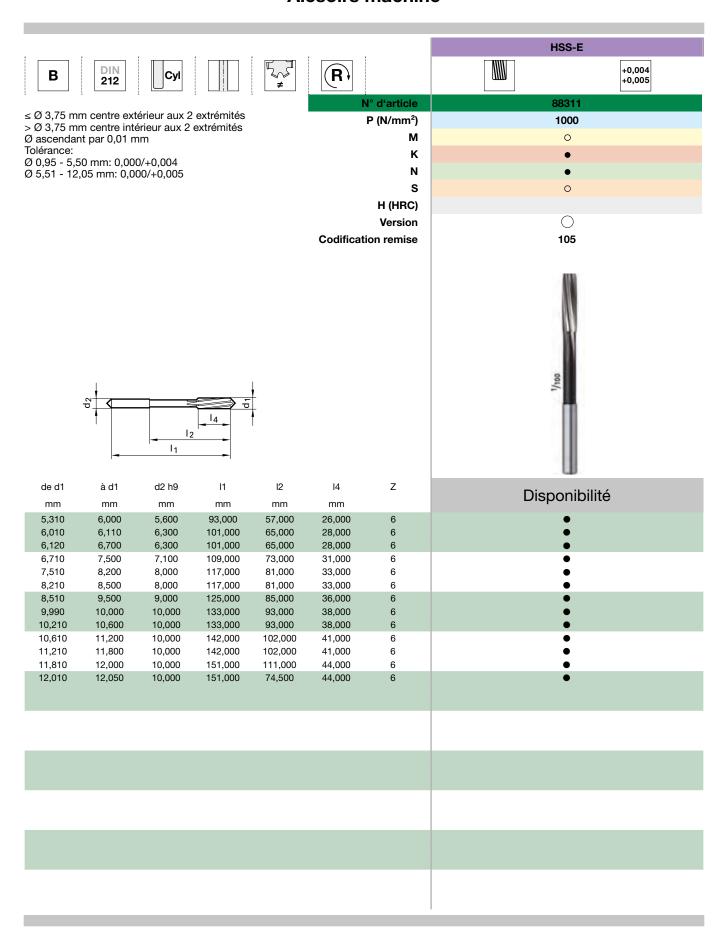


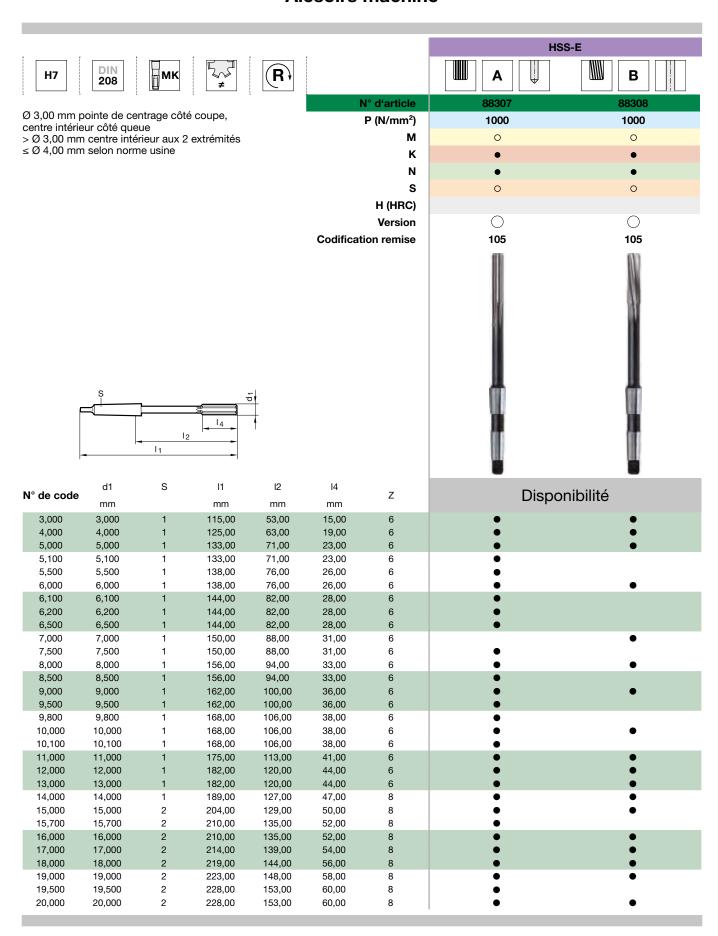


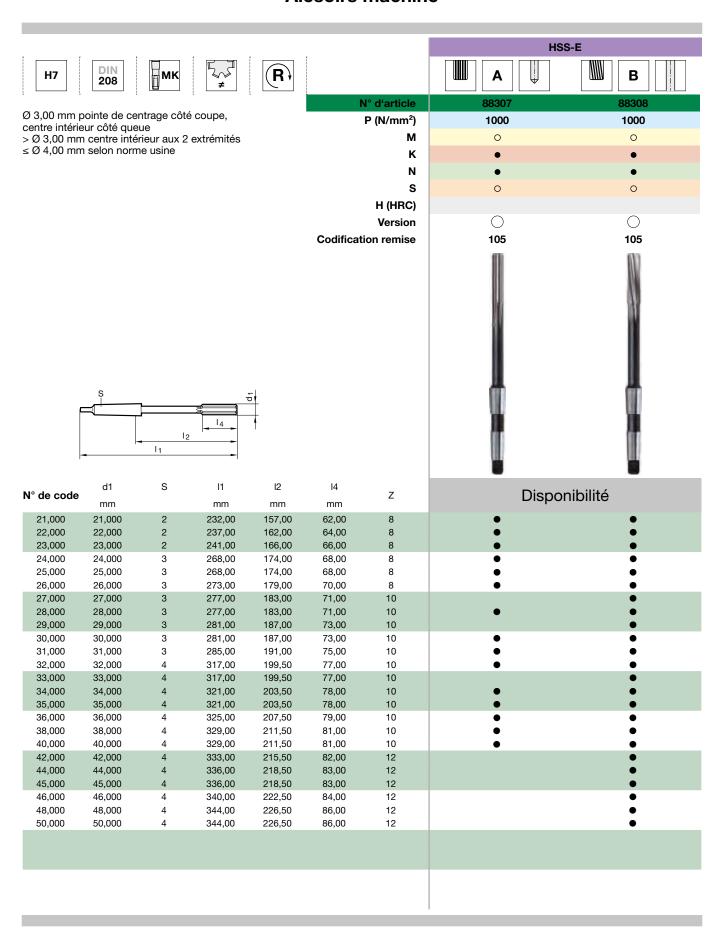


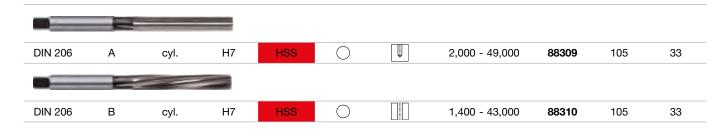




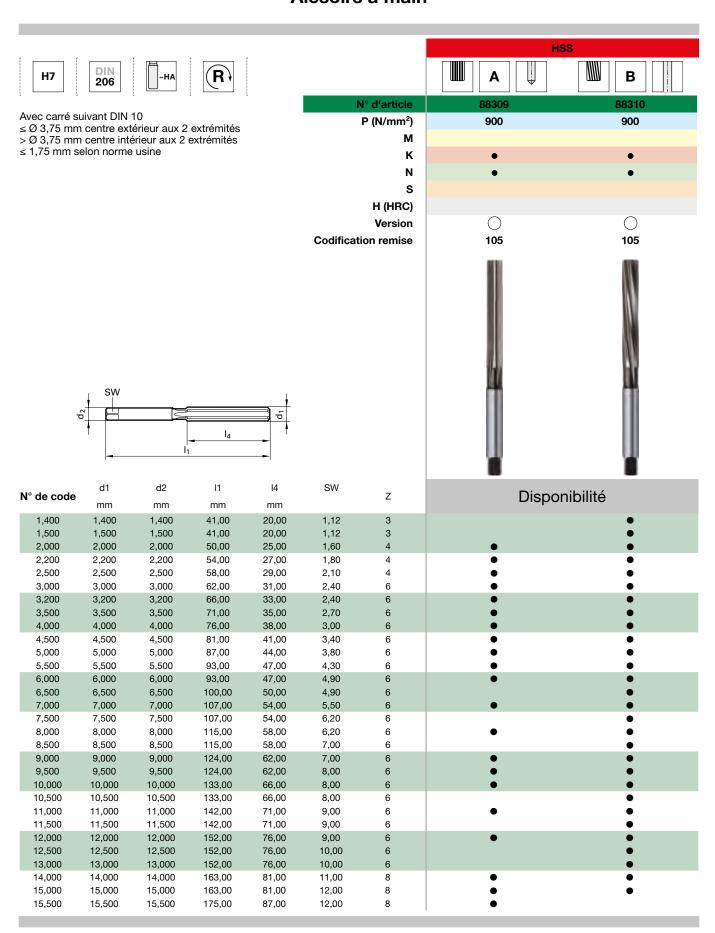




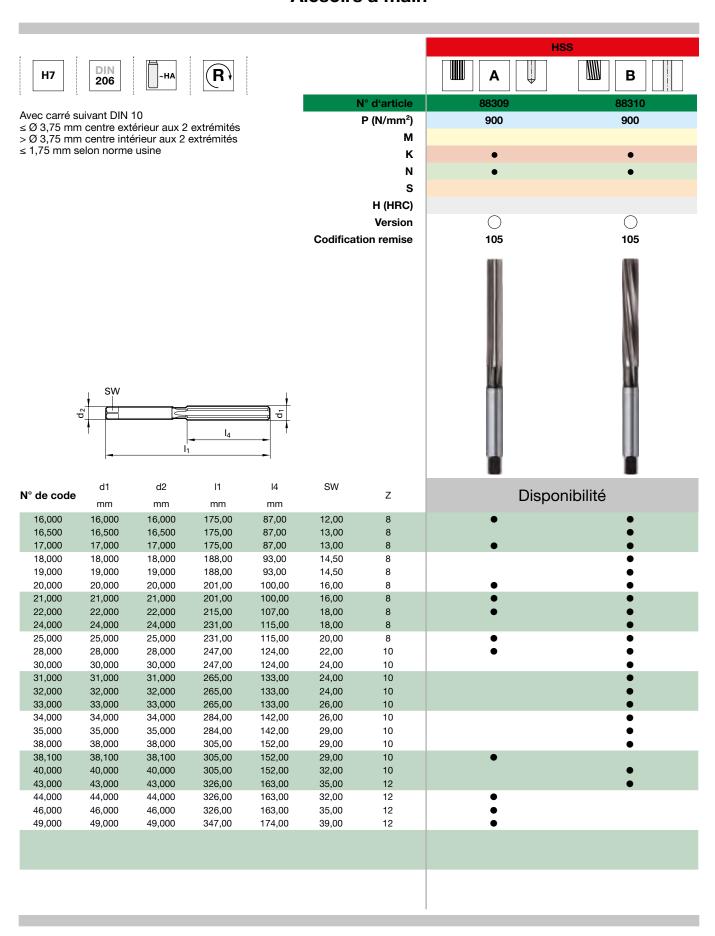




Alésoirs à main


Norme	Forme	Form d'att.	Tolérance	Matière de coupe	Version	Type de trou	d1	N° d'article	Cod. remise	Page

Alésoirs à main



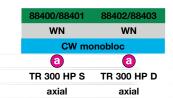
Alésoirs à main

Alésoirs à main

Rendement maximal pour tous les matériaux

Dans notre programme d'alésoirs TR 300 HP vous trouvez des outils adéquats pour l'usinage de presque tous les matériaux. La concordance optimale des géométries spéciales, des matériaux de coupe et des revêtements donne les meilleurs résultats d'usinage pour toutes les opérations d'alésage.

Préconisations d'utilisation des alésoirs CW


Il est conseillé de choisir des outils dont les avances sont en caractères gras. Lorsqu'îl s'agit d'alésages borgnes et courts, utilisez des alésoirs à goujures droites. N° d'article (R)
Norm/DIN
Matière de coupe
Version
Type/Forme
Lubrification

			Gamr	ne d'avar	nce n°			
Ø outil mm	71	72	73	74	75	76	77	
				f (mm/tr.)				
< 4,00	0,080	0,100	0,125	0,300	0,500	0,800	1,000	•
4,00	0,100	0,125	0,160	0,300	0,500	1,000	1,200	
5,00	0,100	0,125	0,160	0,400	0,600	1,000	1,400	
6,30	0,125	0,160	0,200	0,400	0,700	1,200	1,600	
8,00	0,160	0,200	0,250	0,600	1,000	1,800	2,400	
10,00	0,200	0,250	0,315	0,600	1,200	1,800	2,400	
12,50	0,200	0,250	0,315	0,800	1,200	2,000	2,500	
16,00	0,250	0,315	0,400	0,800	1,400	2,200	2,600	Produits de refroidissement:
20,00	0,315	0,400	0,500	0,800	1,400	2,200	2,600	O Air
25,00	0,400	0,500	0,630	1,000	1,600	2,500	3,000	Huile
31,50	0,400	0,500	0,630	1,000	2,000	3,000	3,600	Huile soluble
40,00	0,500	0,630	0,800	1,200	2,000	3,000	3,600	9 1140 00.445.0
50,00	0,630	0,800	1,000	1,400	2,200	3,200	3,600	Sens de coupe:
> 50,00	0,800	1,000	1,250	1,600	2,200	3,200	3,600	R coupe à droite

Matières	Exemples, nouvelle désignation (Ancienne désignation entre parenthèses) Caractères gras = N° de matières suivant DIN EN	Résistance MPa (N/mm2)	Dureté	Prod. de refr.
Aciers de construction	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		0
	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		
Aciers de décolletage	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	≤850		
	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		
Aciers d'amélioration non-alliés	1.0402 C22, 1.1178 C30E (Ck30)	≤700		0
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		<u> </u>
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		
Aciers d'amélioration alliés	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		O
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Aciers de cémentat. non-alliés	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		
Aciers de cémentation alliés	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		•
	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		•
Aciers de nitruration	1.8504 34CrAl6	≤1000		Q
	1.8519 31CrMoV9, 1.8550 34CrAlNi7	≤1400		
Aciers à outils	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		Q .
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		•
Aciers rapides	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		•
Aciers à ressort	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)		≤350 HB	•
Aciers inoxydables, sulfurés	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900		•
austénitique	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		•
martensitique	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Aciers trempés	-		≤48 HRC	•
			≤63 HRC	•
Alliages spéciaux	Nimonic, Inconel, Monel, Hastelloy	≤2000		
Fontes	0.6010 EN-GJL-100 (GG10), 0.6020 EN-GJL-200 (GG20)		≤240 HB	QQ
	0.6025 EN-GJL-250 (GG25), 0.6035 EN-GJL-350 (GG35)		≤350 HB	ŎŎ
Fontes à graphite sphéroïdal	0.7050 EN-GJS-500-7 (GGG50), 0.8035 EN-GJMW-350-4 (GTW35)		≤240 HB	
et fontes malléables	0.7070 EN-GJS-700-2 (GGG70), 0.8170 EN-GJMB-700-2 (GTS70)		≤350 HB	
Fontes dures	-		≤350 HB	0
Titane et alliages de Titane	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850		•
	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		
Aluminium et ses alliages	3.0255 Al99,5, 3.2315 AlMgSi1, 3.3515 AlMg1	≤400		0
Alliages malléables d'Al	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		0
Alliages d'Al d'inject. ≤ 10 % Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		
≤ 24 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		
Alliages de Magnésium	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		O .
Cuivres, faiblement alliés	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		0
Laiton à copeaux courts,	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		
à copeaux longs	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		
Bronze, à copeaux courts	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
	2.0790 CuNi18Zn19Pb	≤850		
Bronze, à copeaux longs	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850		
	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		
Thermodurcissables	Epoxidharz, Resopal, Pertinax, Moltopren	≤150 <100		0
Thermoplastiques	Plexiglas, Hostalen, Novodur, Makralon	≤100	20011	00
Nouvelles fontes GGV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB	
Namellas fantas ADI	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6	1000	≤300 HB	
Nouvelles fontes ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000 -1400		
	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400		
renf. de fibres d'aramides	Kevlar OSIA (OSIA)	≤1000		0
renf. de fibres de verre/carbone	GFK/CFK	≤1000		

opoli a TiAIN nanoA

88350	88350
WN	WN
CW mo	nobloc
	\circ
В	В

88352	88353	88354	88355
~ 8050	~ 8050	~ 8051	~ 8051
	CW mo	nobloc	
	\circ	\circ	\bigcirc
Α	В	Α	В

v _c m/min	Gamme d'a	avance n°
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
120-250	75-76	75-76
60-120	75-76	75-76
30-60	73-74	73-74
60-120	74-75	74-75
40-80	74-75	74-75
60-120	74-75	74-75
40-60	73-74	73-74
30-60	73-74	73-74
40-60	74-75	74-75
60-140	75-76	75-76
60-140	75-76	75-76
120-250	74-75	74-75
60-120	74-75	74-75
30-50	74-75	74-75
40-60	74	74
40-60	74	74
80-160	75-76	75-76
00 700		
100-250	75-76	75-76
100-250	75-76	75-76
100-250	75-76	75-76
80-200	75-76	75-76
80-200	75-76	75-76
		, 5 . 5
80	75-76	75-76
80	75-76	75-76
80	71	71
80	71	71

m/min		
18	72	72
16 18	72 72	72 72
18 16	72 72	72 72
18	71	71
16	72	72
14	71	71
14 12	71 71	71 71
12 18	71	71
14	71	71
12	71	71
14	71	71
12	71	71
12 10	71 71	71 71
10	71	71
70		
8	71	71
6	71	71
6 6	71 71	71
б	/1	/1
6	71	71
20	71	71
18 20	71 71	71 71
20 18	71	71
10	71	71
10	71	71
30 30	73 73	73 73
40	72	72
30	72	72
25	72	72
25	72	72
35 30	72 72	72 72
35	72	72
30	72	72
30	72	72
25	72	72
20 20	73 73	73 73
16	71	71
16 12	71 71	71
12	71	71

v _c m/min		Gamme d'	avance n°	
18	72	72	72	72
16	72	72	72	72
18	72	72	72	72
16	72	72	72	72
18	71	71	71	71
16	72	72	72	72
14	71	71	71	71
14	71	71	71	71
12	71 71	71 71	71 71	71 71
18 14	71	71	71	71
14 12	71	71	71 71	71
14	71	71	71	71
12	71	71	71	71
12	71	71	71	71
10	71	71	71	71
10	71	71	71	71
8	71	71	71	71
6 6	71 71	71 71	71 71	71 71
O	/1	/1	/ 1	/ 1
6	71	71	71	71
20	71	71	71	71
18	71	71	71	71
20	71	71	71	71
18	71	71	71	71
10 10	71 71	71 71	71 71	71 71
30	73	73	73	73
30	73	73	73	73
40	72	72	72	72
30	72	72	72	72
25	72	72	72	72
25	72	72	72	72
35	72	72	72	72
30	72	72	72	72
35 30	72 72	72 72	72 72	72 72
30	72	72	72	72
25	72	72	72	72
20	73	73	73	73
20	73	73	73	73
16	71	71	71	71
16	71	71	71	71

Préconisations d'utilisation des alésoirs HSS-E

Il est conseillé de choisir des outils dont les avances sont en caractères gras. Lorsqu'îl s'agit d'alésages borgnes et courts, utilisez des alésoirs à goujures droites. N° d'article (® Norm/DIN Matière de coupe Version Type/Forme

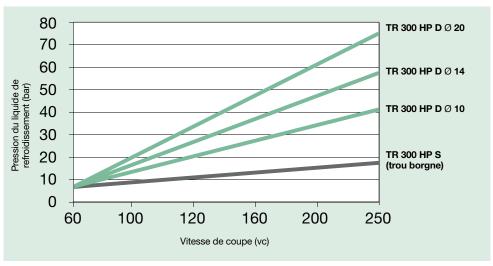
			Gamr	ne d'avar	ice n°			
Ø outil mm	71	72	73	74	75	76	77	
				f (mm/U)				
< 4,00	0,080	0,100	0,125	0,300	0,500	0,800	1,000	•
4,00	0,100	0,125	0,160	0,300	0,500	1,000	1,200	
5,00	0,100	0,125	0,160	0,400	0,600	1,000	1,400	
6,30	0,125	0,160	0,200	0,400	0,700	1,200	1,600	
8,00	0,160	0,200	0,250	0,600	1,000	1,800	2,400	
10,00	0,200	0,250	0,315	0,600	1,200	1,800	2,400	
12,50	0,200	0,250	0,315	0,800	1,200	2,000	2,500	
16,00	0,250	0,315	0,400	0,800	1,400	2,200	2,600	Produits de refroidissement:
20,00	0,315	0,400	0,500	0,800	1,400	2,200	2,600	○ Air
25,00	0,400	0,500	0,630	1,000	1,600	2,500	3,000	Huile
31,50	0,400	0,500	0,630	1,000	2,000	3,000	3,600	Huile soluble
40,00	0,500	0,630	0,800	1,200	2,000	3,000	3,600	
50,00	0,630	0,800	1,000	1,400	2,200	3,200	3,600	Sens de coupe:
> 50,00	0,800	1,000	1,250	1,600	2,200	3,200	3,600	R coupe à droite

Matières	Exemples, nouvelle désignation (Ancienne désignation entre parenthèses) Caractères gras = N° de matières suivant DIN EN	Résistance MPa (N/mm2)	Dureté	Prod. de refr.
Aciers de construction	1.0035 S185(St33), 1.0486 P275N(StE285), 1.0345 P235GH(H1), 1.0425 P265GH(H2)	≤500		0
	1.0050 E295 (St50-2), 1.0070 E360 (St70-2), 1.8937 P500NH (WStE500)	≤1000		
Aciers de décolletage	1.0718 11SMnPb30 (9SMnPb28), 1.0736 11SMn37 (9SMn36)	<850		
, total a decemenage	1.0727 46S20 (45S20), 1.0728 (60S20), 1.0757 46SPb20 (45SPb20)	≤1000		
Aciers d'amélioration non-alliés	1.0402 C22, 1.1178 C30E (Ck30)	≤700		
	1.0503 C45, 1.1191 C45E (Ck45)	≤850		ŏ
	1.0601 C60, 1.1221 C60E (Ck60)	≤1000		000
Aciers d'amélioration alliés	1.5131 50MnSi4, 1.7003 38Cr2, 1.7030 28Cr4	≤1000		
	1.5710 36NiCr6, 1.7035 41Cr4, 1.7225 42CrMo4	≤1400		
Aciers de cémentat, non-alliés	1.0301 (C10), 1.1121 C10E (Ck10)	≤850		Ŏ
Aciers de cémentation alliés	1.7276 10CrMo11, 1.5125 11MnSi6	≤1000		Ŏ
	1.5752 15NiCr13, 1.7131 16MnCr5, 1.7264 20CrMo5	≤1400		ě
Aciers de nitruration	1.8504 34CrAl6	≤1000		Ö
	1.8519 31CrMoV9. 1.8550 34CrAlNi7	≤1400		ĕ
Aciers à outils	1.1750 C75W, 1.2067 102Cr6, 1.2307 29CrMoV9	≤850		Ŏ
	1.2080 X210Cr12, 1.2083 X42Cr13, 1.2419 105WCr6, 1.2767 X45NiCrMo4	≤1400		ĕ
Aciers rapides	1.3243 S 6-5-2-5, 1.3343 S 6-5-2, 1.3344 S 6-5-3	≤1400		Ě
Aciers à ressort	1.5026 55Si7, 1.7176 55Cr3, 1.8159 51CrV4 (51CrV4)	21.00	≤350 HB	
Aciers inoxydables, sulfurés	1.4005 X12CrS13, 1.4104 X14CrMoS17, 1.4105 X6CrMoS17, 1.4305 X8CrNiS18-9	≤900	2000 1 12	
austénitique	1.4301 X5CrNi18-10 (V2A), 1.4541 X6CrNiTi18-10, 1.4571 X6CrNiMoTi 17-12-2 (V4A)	≤1100		
martensitique	1.4057 X20CrNi172 (X17CrNi16-2), 1.4122 X39CrMo17-1, 1.4521 X2CrMoTi18-2	≤1500		
Aciers trempés	- 1.4007 X200111172 (X17011110 2), 1.4122 X030111017 1, 1.4021 X2011101110 2	21000	≤48 HRC	
Adicis tiempes			≤63 HRC	
Alliages spéciaux	Nimonic, Inconel, Monel, Hastelloy	≤2000	200 1 11 10	
Fontes	0.6010 EN-GJL-100 (GG10), 0.6020 EN-GJL-200 (GG20)	32000	≤240 HB	00
Torrico	0.6025 EN-GJL-250 (GG25), 0.6035 EN-GJL-350 (GG35)		≤350 HB	88
Fontes à graphite sphéroïdal	0.7050 EN-GJS-500-7 (GGG50), 0.8035 EN-GJMW-350-4 (GTW35)		≤240 HB	
et fontes malléables	0.7070 EN-GJS-700-2 (GGG70), 0.8170 EN-GJMB-700-2 (GTS70)		≤350 HB	
Fontes dures	-		≤350 HB	Ŏ
Titane et alliages de Titane	3.7024 Ti99,5, 3.7114 TiAl5Sn2,5, 3.7124 TiCu2	≤850	2000 112	Ŏ
Than of amages as Than	3.7154 TiAl6Zr5, 3.7165 TiAl6V4, 3.7184 TiAl4Mo4Sn2,5, - TiAl8Mo1V1	≤1400		•
Aluminium et ses alliages	3.0255 Al99,5, 3.2315 AlMgSi1, 3.3515 AlMg1	≤400		Ŏ
Alliages malléables d'Al	3.0615 AlMgSiPb, 3.1325 AlCuMg1, 3.3245 AlMg3Si, 3.4365 AlZnMgCu1,5	≤650		Ŏ
Alliages d'Al d'inject. ≤ 10 % Si	3.2131 G-AlSi5Cu1, 3.2153 G-AlSi7Cu3, 3.2573 G-AlSi9	≤600		Ŏ
≤ 24 % Si	3.2581 G-AlSi12, 3.2583 G-AlSi12Cu, - G-AlSi12CuNiMg	≤600		
Alliages de Magnésium	3.5200 MgMn2, 3.5812.05 G-MgAl8Zn1, 3.5612.05 G-MgAl6Zn1	≤400		Ŏ
Cuivres, faiblement alliés	2.0070 SE-Cu, 2.1020 CuSn6, 2.1096 G-CuSn5ZnPb	≤500		Ŏ
Laiton à copeaux courts,	2.0380 CuZn39Pb2, 2.0401 CuZn39Pb3, 2.0410 CuZn43Pb2	≤600		
à copeaux longs	2.0250 CuZn20, 2.0280 CuZn33, 2.0332 CuZn37Pb0,5	≤600		
Bronze, à copeaux courts	2.1090 CuSn7ZnPb, 2.1170 CuPb5Sn5, 2.1176 CuPb10Sn	≤600		
Dionizo, a copoadir courto	2.0790 CuNi18Zn19Pb	≤850		
Bronze, à copeaux longs	2.0916 CuAl5, 2.0960 CuAl9Mn, 2.1050 CuSn10	≤850		
2.0.120, a copodar longo	2.0980 CuAl11Ni, 2.1247 CuBe2	≤1000		ă
Thermodurcissables	Epoxidharz, Resopal, Pertinax, Moltopren	≤150		Ŏ
Thermoplastiques	Plexiglas, Hostalen, Novodur, Makralon	≤100		00
Nouvelles fontes GGV	EN-GJV250 (GGV25), EN-GJV350 (GGV35)		≤220 HB	ÕÕ
	EN-GJV400 (GGV40), EN-GJV500 (GGV50), SiMo 6		≤300 HB	ŏŏ
Nouvelles fontes ADI	EN-GJS-800-8 (ADI800), EN-GJS-1000-5 (ADI1000)	≤1000		00
	EN-GJS-1200-2 (ADI1200), EN-GJS-1400-1 (ADI1400)	≤1400		ŏŏ
renf. de fibres d'aramides	Kevlar	≤1000		Õ
renf. de fibres de verre/carbone	GFK/CFK	≤1000		ŏ

opoli a TiAIN nanoA

88300	88301
201-2	212-3
HS	S-E
D	D

88302	88304	88305	88306	88307	88308				
212	212	212-2	212-2	208	208				
HSS-E									
0 0 0 0 0									
Λ	R	Λ	R	Λ	R				



	0.10	U			Ψ		0.00	•			- 40
v _c m/min			V _C m/min				'avance n°			v _c m/min	Avance n°
16 12	72 72	72 72	16 12	72 72	72 72	72 72	72 72	72 72	72 72	16 12	72 72
12	72	72	12	72	72	72	72	72	72	12	72
10	71	71	10	71	71	71	71	71	71	10	71
14	72	72	14	72	72	72	72	72	72	14	72
12 10	71 71	71 71	12 10	71 71	71 71	71 71	71 71	71 71	71 71	12 10	71 71
10	71	71	10	71	71	71	71	71	71	10	71
8	71	71	8	71	71	71	71	71	71	8	71
16 10	72 71	72 71	16 10	72 71	72 71	72 71	72 71	72 71	72 71	16 10	72 71
8	71	71	8	71	71	71	71	71	71	8	71
10 8	71 71	71 71	10 8	71 71	71 71	71 71	71 71	71 71	71 71	10 8	71 71
14	72	72	14	72	72	72	72	72	72	14	72
10	71	71	10	71	71	71	71	71	71	10	71
10	71	71	10	71	71	71	71	71	71	10	71
6	72	72	6	72	72	72	72	72	72	6	72
6	72	72	6	72	72	72	72	72	72	6	72
4	72	72	4	72	72	72	72	72	72	4	72
4	71	71	4	71	71	71	71	71	71	4	71
14 12	71 71	71 71	14 12	71 71	71 71	71 71	71 71	71 71	71 71	14 12	71 71
12	71	71	12	71	71	71	71	71	71	12	71
10	71	71	10	71	71	71	71	71	71	10	71
6	71	71	6	71	71	71	71	71	71	6	71
4	71	71	4	71	71	71	71	71	71	4	71
18	73	73	18	73	73	73	73	73	73	18	73
18 20	73 72	73 72	18 20	73 72	73 72	73 72	73 72	73 72	73 72	18 20	73 72
20 18	72 72	72 72	18	72 72	72 72	72 72	72 72	72 72	72 72	18	72 72
20	72	72	20	72	72	72	72	72	72	20	72
18	72	72	18	72	72 72	72 72	72	72	72	18	72
18 16	72 72	72 72	18 16	72 72	72 72	72 72	72 72	72 72	72 72	18 16	72 72
20	72	72	20	72	72	72	72	72	72	20	72
18	72	72	18	72	72	72	72	72	72	18	72
18 14	72 72	72 72	18 14	72 72	72 72	72 72	72 72	72 72	72 72	18 14	72 72
12 14	73 73	73 73	12 14	73 73	73 73	73 73	73 73	73 73	73 73	12 14	73 73
8 8	71 71	71 71	8 8	71 71	71 71	71 71	71 71	71 71	71 71	8	71 71
O	/1	/ 1	O	/ 1	/1	/ 1	/1	/ 1	/ 1	O	71

Canal d'arrosage optimal pour les alésoirs TR 300 HP

Pression du liquide de refroidissement

Pression du liquide de lubr. / refr. en bars. Vitesse de coupe vc en m / mn.

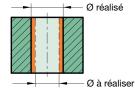
Valable pour les dimensions standards. A condition que la pompe du liquide de lubrification et de refroidissement puisse assurer la pression et le débit prescrit.

Incidents d'usinage

En alésage, il faut absolument respecter les vitesses de coupe, les vitesses d'avance et assurer une lubrification parfaite. Il ne faut pas oublier que tous les alésoirs, à part les alésoirs à coupe frontale et les alésoirs très petits, ont tendance à suivre le perçage réalisé avant l'alésage. Ainsi, les alésoirs n'éliminent en aucun cas les erreurs d'alignement. Les erreurs d'alignement entre l'axe de la broche et le perçage peuvent éventuellement être corrigées en utilisant un appareil d'alésage flottant, surtout lorsque le diamètre réalisé a tendance à être un peu trop fort voire, hors tolérance. Ci-dessous, nous vous décrivons quelques incidents typiques rencontrés lors des opérations d'alesages, leur provenance et des conseils afin d'y remédier.

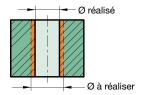
Définition des termes :

Dim. théoriques Dim. de l'alésage à réaliser. Dia. max. et diamètre min. de la zone de tolérance de l'alésage à réaliser Dim. mesurées sur

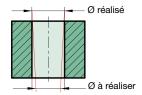

Dim. effectives

"Alésage"

l'alésage réalisé Alésage réalisé avec


l'alésoir, après le perçage

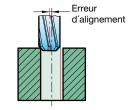
Alésage trop grand


- Le diamètre de l'alésoir est trop grand
- Les vitesses de coupe sont trop élevées
- Erreur de battement de la broche
- Entrée sur l'alésoir trop courte ou irrégulière
- Collage provenant des conditions de coupe incorrects ou mauvaise lubrification
- Lubrifiant mal approprié, alésage trop grand à cause d'une l'huile entière

Alésage trop petit

- · L'outil ne coupe plus, mais racle seulement
- Les vitesses de coupe sont trop basses
- Paroi de la pièce à aléser trop fine, se
- Trop peu de surépaisseur, l'alésoir refuse la coupe
- De par des contraintes, déformation de la cylindricité

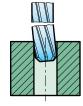
Alésage devient conique


- Erreur de battement de l'outil sur son attachement
- Entrée asymétrique
- Erreur d'alignement entre l'outil et le perçage. Utiliser un appareil d'alésage flottant surtout sur les tours
- Préparation du perçage avant l'alésage, non conforme

4 Etat de surface de mauvaise qualité

- Les vitesses de coupe sont trop basses
- Mauvaise lubrification ou insuffisante, collage
- Outil abîmé par ex. arêtes de coupe ébréchées
- Erreur de battement de la broche de la machine
- Mauvaise évacuation des copeaux

6 Erreur d'alignement


- Perçage décalé
- Erreur de battement de la broche de la machine
- Eventuellement, utiliser un appareil d'alésage flottant
- Si nécessaire, piloter afin de corriger l'erreur de positionnement du perçage

Alésage avec des facettes

- Avance trop faible
- Collage sur les arêtes de coupe
- Mauvaise qualité de graissage du lubrifiant
- Témoin cylindrique trop faible
- Trop peu de surépaisseur
- · Outil mal serré
- Erreur de battement ou jeu sur la broche d'alésage

L'outil se grippe et se casse

- Erreur de positionnement du perçage pilote
- Trop peu de conicité arrière
- Témoin cylindrique trop large
- Diamètre de perçage trop petit
- Entrée usée ou mal affûtée
- · Avance trop importante
- Blocage de copeaux Augmenter l'avance afin d'obtenir des copeaux courts

L'alésage est rayé

- Les vitesses de coupe sont trop basses
- Arêtes de coupe usées
- Arêtes de coupe ébréchées
- Collage sur les arêtes de coupe
- Erreur de positionnement du perçage -
- Insuffisance de la lubrification

Tolérances usuelles des alésages, en µm

Diamètre nominal A en mm				E	3		С				
de	à	9	11	8	9	10	11	8	9	10	11
0	3	+295	+330	+154	+165	+180	+200	+74	+85	+100	+120
U	3	+270	+270	+140	+140	+140	+140	+60	+60	+60	+60
3	6	+300	+345	+158	+170	+188	+215	+88	+100	+118	+145
3	O	+270	+270	+140	+140	+140	+140	+70	+70	+70	+70
6	10	+316	+370	+172	+186	+208	+240	+102	+116	+138	+170
O	10	+280	+280	+150	+150	+150	+150	+80	+80	+80	+80
10	18	+333	+400	+177	+193	+220	+260	+122	+138	+165	+205
10	10	+290	+290	+150	+150	+150	+150	+95	+95	+95	+95
18	30	+352	+430	+193	+212	+244	+290	+143	+162	+194	+240
10	30	+300	+300	+160	+160	+160	+160	+110	+110	+110	+110
30	40	+372	+470	+209	+232	+270	+330	+159	+182	+220	+280
		+310	+310	+170	+170	+170	+170	+120	+120	+120	+120
40	50	+382	+480	+219	+242	+280	+340	+169	+192	+230	+290
40	30	+320	+320	+180	+180	+180	+180	+130	+130	+130	+130
50	65	+414	+530	+236	+264	+310	+380	+186	+214	+260	+330
	00	+340	+340	+190	+190	+190	+190	+140	+140	+140	+140
65	80	+434	+550	+246	+274	+320	+390	+196	+224	+270	+340
00	00	+360	+360	+200	+200	+200	+200	+150	+150	+150	+150
80	100	+467	+600	+274	+307	+360	+440	+224	+257	+310	+390
30	100	+380	+380	+220	+220	+220	+220	+170	+170	+170	+170
100	120	+497	+630	+294	+327	+380	+460	+234	+267	+320	+400
100	120	+410	+410	+240	+240	+240	+240	+180	+180	+180	+180

	re nominal			D				E			I	F	
de	ı mm à	8	9	10	11	12	7	8	9	6	7	8	9
0	3	+34	+45	+60	+80	+120	+24	+28	+39	+12	16	+20	+31
U	3	+20	+20	+20	+20	+20	+14	+14	+14	+6	+6	+6	+6
3	6	+48	+60	+78	+105	+150	+32	+38	+50	+18	+22	+28	+40
3	U	+30	+30	+30	+30	+30	+20	+20	+20	+10	+10	+10	+10
6	10	+62	+76	+98	+130	+190	+40	+47	+61	+22	+28	+35	+49
O	10	+40	+40	+40	+40	+40	+25	+25	+25	+13	+13	+13	+13
10	18	+77	+93	+120	+160	+230	+50	+59	+75	+27	+34	+43	+59
10	10	+50	+50	+50	+50	+50	+32	+32	+32	+16	+16	+16	+16
18	30	+98	+117	+149	+195	+275	+61	+73	+92	+33	+41	+53	+72
10	30	+65	+65	+65	+65	+65	+40	+40	+40	+20	+20	+20	+20
30	50	+119	+142	+180	+240		+75	+89	+112	+41	+50	+64	+87
30	30	+80	+80	+80	+80		+50	+50	+50	+25	+25	+25	+25
50	80	+146	+174	+220	+290		+90	+106	+134	+49	+60	+76	+104
30	00	+100	+100	+100	+100		+60	+60	+60	+30	+30	+30	+30
80	120	+174	+207	+260	+340		+107	+126	+159	+58	+71	+90	+123
00	120	+120	+120	+120	+120		+72	+72	+72	+36	+36	+36	+36
120	180							+148					
120	100							+85					
180	250							+172					
100	230							+100					

Tolérances usuelles des alésages, en µm

	e nominal mm	(G				Н					J	
de	à	6	7	6	7	8	9	10	11	12	6	7	8
0	3	+8	+12	+6	+10	+14	+25	+40	+60	+100	+2	+4	+6
U	3	+2	+2	0	0	0	0	0	0	0	-4	-6	-8
3	6	+12	+16	+8	+12	+18	+30	+48	+75	+120	+5	+6	+10
3	O	+4	+4	0	0	0	0	0	0	0	-3	-6	-8
6	10	+14	+20	+9	+15	+22	+36	+58	+90	+150	+5	+8	+12
0	10	+5	+5	0	0	0	0	0	0	0	-4	-7	-10
10	18	+17	+24	+11	+18	+27	+43	+70	+110	+180	+6	+10	+15
10	10	+6	+6	0	0	0	0	0	0	0	-5	-8	-12
18	30	+20	+28	+13	+21	+33	+52	+84	+130	+210	+8	+12	+20
10	30	+7	+7	0	0	0	0	0	0	0	-5	-9	-13
30	50	+25	+34	+16	+25	+39	+62	+100	+160	+250	+10	+14	+24
30	50	+9	+9	0	0	0	0	0	0	0	-6	-11	-15
50	80	+29	+40	+19	+30	+46	+74	+120	+190	+300	+13	+18	+28
50	60	+10	+10	0	0	0	0	0	0	0	-6	-12	-18
80	120	+34	+47	+22	+35	+54	+87	+140	+220	+350	+16	+22	+34
60	120	+12	+12	0	0	0	0	0	0	0	-6	-13	-20
100	100		+54	+25	+40	+63	+100	+160	+250		+18	+26	+41
120	180		+14	0	0	0	0	0	0		-7	-14	-22
100	050		+61	+29	+46	+72	+115	+185	+290		+22	+30	+47
180	250		+15	0	0	0	0	0	0		-7	-16	-25

	re nominal		J:	s			K			М	
de	n mm à	6	7	8	9	6	7	8	6	7	8
0	3	+3	+5	+7	+12,5	0	0	0	-2	-2	-4
U	3	-3	-5	-7	-12,5	-6	-10	-14	-8	-12	-18
3	6	+4	+6	+9	+15	+2	+3	+5	-1	0	+2
3	O	-4	-6	-9	-15	-6	-9	-13	-9	-12	-16
6	10	+4,5	+7,5	+11	+18	+2	+5	+6	-3	0	+1
O	10	-4,5	-7,5	-11	-18	-7	-10	-16	-12	-215	-21
10	18	+5,5	+9	+13,5	+21,5	+2	+6	+8	-4	0	+2
10	10	-5,5	-9	-13,5	-21,5	-9	-12	-19	-15	-18	-25
18	30	+6,5	+10,5	+16,5	+26	+2	+6	+10	-4	0	+4
10	30	-6,5	-10,5	-16,5	-26	-11	-15	-23	-17	-21	-29
30	50	+8	+12,5	+19,5	+31	+3	+7	+12	-4	0	+5
30	30	-8	-12,5	-19,5	-31	-13	-18	-27	-20	-25	-34
50	80	+9,5	+15	+23	+37	+4	+9	+14	-5	0	+5
50	00	-9,5	-15	-23	-37	-15	-21	-32	-24	-30	-41
80	120	+11	+17,5	+27	+43,5	+4	+10	+16	-6	0	+6
- 00	120	-11	-17,5	-27	-43,5	-18	-25	-38	-28	-35	-48
120	180					+4	+12				
120	100					-21	-28				
180	250					+5	+13				
100	230					-24	-33				

Tolérances usuelles des alésages, en µm

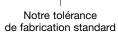
	e nominal mm			ı	N				P		ı	3
de	à	6	7	8	9	10	11	6	7	9	6	7
0	3	-4	-4	-4	-4	-4	-4	-6	-6	-6	-10	-10
U	J	-10	-14	-8	-29	-44	-64	-12	-16	-31	-16	-20
3	6	-5	-4	-2	0	0	0	-9	-8	-12	-12	-11
		-13	-16	-20	-30	-48	-75	-17	-20	-42	-20	-23
6	10	-7	-4	-3	0	0	0	-12	-9	-15	-16	-13
O	10	-16	-19	-25	-36	-58	-90	-21	-24	-51	-25	-28
10	18	-9	-5	-3	0	0	0	-15	-11	-18	-20	-16
10	10	-20	-23	-30	-43	-70	-110	-26	-29	-61	-31	-34
18	30	-11	-7	-3	0	0	0	-18	-14	-22	-24	-20
10	30	-24	-28	-36	-52	-84	-130	-31	-35	-74	-37	-41
30	50	-12	-8	-3	0	0	0	-21	-17	-26	-29	-25
30	50	-28	-33	-42	-62	-100	-160	-37	-42	-88	-45	-50
50	65	-14	-9	-4	0	0	0	-26	-21	-32	-35	-30
30	00	-33	-39	-50	-74	-120	-190	-45	-51	-106	-54	-60
65	80	-14	-9	-4	0	0	0	-26	-21	-32	-37	-32
00	00	-33	-39	-50	-74	-120	-190	-45	-51	-106	-56	-62
80	100	-16	-10	-4	0	0	0	-30	-24	-37	-44	-38
00	100	-38	-45	-58	-87	-140	-220	-52	-59	-124	-66	-73
100	120	-16	-10	-4	0	0	0	-30	-24		-47	-41
100	120	-38	-45	-58	-87	-140	-220	-52	-59		-69	-76

	re nominal n mm	;	S	Т		U		2	x		Z
de	à	6	7	6	6	7	10	10	11	10	11
0	3	-14	-14	-18	-18	-18	-18	-20	-20	-26	-26
U	3	-20	-24	-24	-24	-28	-58	-60	-80	-66	-86
3	6	-16	-15	-20	-20	-19	-23	-28	-28	-35	-35
3	U	-24	-27	-28	-28	-31	-71	-76	-103	-83	-110
6	10	-20	-17	-25	-25	-22	-28	-34	-34	-42	-42
O	10	-29	-32	-34	-34	-37	-86	-92	-124	-100	-132
10	14	-25	-21	-30	-30	-26	-33	-40	-40	-50	-50
10	14	-36	-39	-41	-41	-44	-103	-110	-150	-120	-160
14	18	-25	-21	-30	-30	-26	-33	-45	-45	-60	-60
14	10	-36	-39	-41	-41	-44	-103	-115	-155	-130	-170
18	24	-31	-27	-37	-37	-33	-41	-54	-54	-73	-73
10	24	-44	-48	-50	-50	-54	-125	-138	-184	-157	-203
24	30	-31	-27	-37	-44	-40	-48	-64	-64	-88	-88
24	30	-44	-48	-50	-57	-61	-132	-148	-194	-172	-218
20	40	-38	-34	-43	-55	-51	-60	-80	-80	-112	-112
30	40	-54	-59	-59	-71	-76	-160	-180	-240	-212	-272
40	ΕO	-38	-34	-49	-65	-61	-70	-97	-97	-136	-136
40	50	-54	-59	-65	-81	-86	-170	-197	-257	-236	-296
F 0	C.F.	-47	-42	-60	-81	-76	-87	-122	-122	-172	-172
50	65	-66	-72	-79	-100	-106	-207	-242	-312	-292	-362
C.F.	00	-53	-48	-69	-96	-91	-102	-146	-146	-210	-210
65	80	-72	-78	-88	-115	-121	-222	-266	-336	-330	-400
00	100	-64	-58	-84	-117	-111	-124	-178	-178	-258	-258
80	100	-86	-93	-106	-139	-146	-264	-318	-398	-398	-478
100	100	-72	-66	-97	-137	-131	-144	-210	-210	-310	-310
100	120	-94	-101	-119	-159	-166	-284	-350	-430	-450	-530

Tolérance de fabrication

(Tolérances A ... G) DIN 1420

Diamètre en r	nominal mm		Tolér	ances maxi.		missibles pa ur la toléran			ominal d1 e	n µm	
de	à	A9	A11	B8	В9	B10	B11	C8	C9	C10	C11
		+ 291	+ 321	+ 151	+ 161	+ 174	+ 191	+ 71	+ 81	+ 94	+ 111
1	3	+ 282	+ 300	+ 146	+ 152	+ 160	+ 170	+ 66	+ 72	+ 80	+ 90
0	0	+ 295	+ 333	+ 155	+ 165	+ 180	+ 203	+ 85	+ 95	+ 110	+ 133
3	6	+ 284	+ 306	+ 148	+ 154	+ 163	+ 176	+ 78	+ 84	+ 93	+ 106
0	10	+ 310	+ 356	+ 168	+ 180	+ 199	+ 226	+ 98	+ 110	+ 129	+ 156
6	10	+ 297	+ 324	+ 160	+ 167	+ 178	+ 194	+ 90	+ 97	+ 108	+ 124
10	10	+ 326	+ 383	+ 172	+ 186	+ 209	+ 243	+ 117	+ 131	+ 154	+ 188
10	18	+ 310	+ 344	+ 162	+ 170	+ 184	+ 204	+ 107	+ 115	+ 129	+ 149
18	30	+ 344	+ 410	+ 188	+ 204	+ 231	+ 270	+ 138	+ 154	+ 181	+ 220
10	30	+ 325	+ 364	+ 176	+ 185	+ 201	+ 224	+ 126	+ 135	+ 151	+ 174
30	40	+ 362	+ 446	+ 203	+ 222	+ 255	+ 306	+ 153	+ 172	+ 205	+ 250
30	40	+ 340	+ 390	+ 189	+ 200	+ 220	+ 250	+ 139	+ 150	+ 170	+ 20
40	50	+ 372	+ 456	+ 213	+ 232	+ 265	+ 316	+ 163	+ 182	+ 215	+ 26
40	50	+ 350	+ 400	+ 199	+ 210	+ 230	+ 260	+ 149	+ 160	+ 180	+ 210
50	65	+ 402	+ 501	+ 229	+ 252	+ 292	+ 351	+ 179	+ 202	+ 242	+ 30
30	65	+ 376	+ 434	+ 212	+ 226	+ 250	+ 284	+ 162	+ 176	+ 200	+ 23
65	80	+ 422	+ 521	+ 239	+ 262	+ 302	+ 361	+ 189	+ 212	+ 252	+ 31
05	80	+ 396	+ 454	+ 222	+ 236	+ 260	+ 294	+ 172	+ 186	+ 210	+ 24
80	100	+ 453	+ 567	+ 265	+ 293	+ 339	+ 407	+ 215	+ 243	+ 289	+ 35
80	100	+ 422	+ 490	+ 246	+ 262	+ 290	+ 330	+ 196	+ 212	+ 240	+ 28
100	120	+ 483	+ 597	+ 285	+ 313	+ 359	+ 427	+ 225	+ 253	+ 299	+ 36
100	120	+ 452	+ 520	+ 266	+ 282	+ 310	+ 350	+ 206	+ 222	+ 250	+ 29
120	140	+ 545	+ 672	+ 313	+ 345	+ 396	+ 472	+ 253	+ 285	+ 336	+ 412
120	140	+ 510	+ 584	+ 290	+ 310	+ 340	+ 384	+ 230	+ 250	+ 280	+ 324
140	160	+ 605	+ 732	+ 333	+ 365	+ 416	+ 492	+ 263	+ 295	+ 346	+ 422
140	100	+ 570	+ 644	+ 310	+ 330	+ 360	+ 404	+ 240	+ 260	+ 290	+ 33
160	180	+ 665	+ 792	+ 363	+ 395	+ 446	+ 522	+ 283	+ 315	+ 366	+ 442
100	100	+ 630	+ 704	+ 340	+ 360	+ 390	+ 434	+ 260	+ 280	+ 310	+ 35


	e nominal mm			Tolérance	es maxi.			es par rap érance de		diamètre i je	nominal o	d1 en µm		
de	à	D8	D9	D10	D11	E7	E8	E9	F6	F7	F8	F9	G6	G7
1	3	+ 31	+ 41	+ 54	+ 71	+ 22	+ 25	+ 35	+ 11	+ 14	+ 17	+ 27	+ 7	+ 10
ı	3	+ 26	+ 32	+ 40	+ 50	+ 18	+ 20	+ 26	+ 8	+ 10	+ 12	+ 18	+ 4	+ 6
3	6	+ 45	+ 55	+ 70	+ 93	+ 30	+ 35	+ 45	+ 16	+ 20	+ 25	+ 35	+ 10	+ 14
3	O	+ 38	+ 44	+ 53	+ 66	+ 25	+ 28	+ 34	+ 13	+ 15	+ 18	+ 24	+ 7	+ 9
6	10	+ 58	+ 70	+ 89	+ 116	+ 37	+ 43	+ 55	+ 20	+ 25	+ 31	+ 43	+ 12	+ 17
	10	+ 50	+ 57	+ 68	+ 84	+ 31	+ 35	+ 42	+ 16	+ 19	+ 23	+ 30	+ 8	+ 11
10	18	+ 72	+ 86	+ 109	+ 143	+ 47	+ 54	+ 68	+ 25	+ 31	+ 38	+ 52	+ 15	+ 21
10	10	+ 62	+ 70	+ 84	+ 104	+ 40	+ 44	+ 52	+ 21	+ 24	+ 28	+ 36	+ 11	+ 14
18	30	+ 93	+ 109	+ 136	+ 175	+ 57	+ 68	+ 84	+ 31	+ 37	+ 48	+ 64	+ 18	+ 24
		+ 81	+ 90	+ 106	+ 129	+ 49	+ 56	+ 65	+ 26	+ 29	+ 36	+ 45	+ 13	+ 16
30	50	+ 113	+ 132	+ 165	+ 216	+ 71	+ 83	+ 102	+ 38	+ 46	+ 58	+ 77	+ 22	+ 30
00	00	+ 99	+ 110	+ 130	+ 160	+ 62	+ 69	+ 80	+ 32	+ 37	+ 44	+ 55	+ 16	+ 21
50	80	+ 139	+ 162	+ 202	+ 261	+ 85	+ 99	+ 122	+ 46	+ 55	+ 69	+ 92	+ 26	+ 35
		+ 122	+ 136	+ 160	+ 194	+ 74	+ 82	+ 96	+ 39	+ 44	+ 52	+ 66	+ 19	+ 24
80	120	+ 165	+ 193	+ 239	+ 307	+ 101	+ 117	+ 145	+ 54	+ 65	+ 81	+ 109	+ 30	+ 41
00	120	+ 146	+ 162	+ 190	+ 230	+ 88	+ 98	+ 114	+ 46	+ 52	+ 62	+ 78	+ 22	+ 28
120	180	+ 198	+ 230	+ 281	+ 357	+ 119	+ 138	+ 170	+ 64	+ 77	+ 96	+ 128	+ 35	+ 48
120	100	+ 175	+ 195	+ 225	+ 269	+ 105	+ 115	+ 135	+ 55	+ 63	+ 73	+ 93	+ 26	+ 34

Tolérance de fabrication

(Tolérances H ... P) DIN 1420

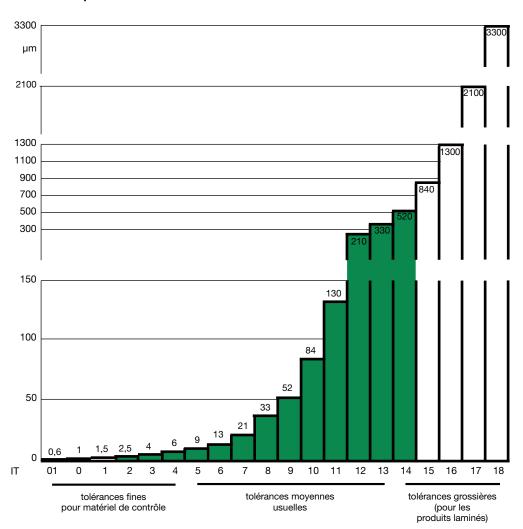
Diamètre nominal en mm			Toléra	inces ma	xi. et min		sibles par toléranc			nètre nor	ninal d1	en µm		
de à	H6	H7	H8	H9	H10	H11	H12	J6	J7	J8	JS6	JS7	JS8	JS9
. 4 0	+ 5	+ 8	+11	+21	+ 34	+ 51	+ 85	+ 1	+ 2	+ 3	+ 2	+ 3	+ 4	+ 8
>13	+ 2	+ 4	+ 6	+12	+ 20	+ 30	+ 50	-2	- 2	- 2	- 1	- 1	- 1	- 1
.0 6	+ 6	+10	+15	+25	+ 40	+ 63	+102	+ 3	+ 4	+ 7	+ 2	+ 4	+ 6	+10
>36	+ 3	+ 5	+ 8	+14	+ 23	+ 36	+ 60	0	- 1	0	- 1	- 1	- 1	- 1
>610	+ 7	+12	+18	+30	+ 49	+ 76	+127	+ 3	+ 5	+ 8	+ 3	+ 5	+ 7	+12
>010	+ 3	+ 6	+10	+17	+ 28	+ 44	+ 74	- 1	- 1	0	- 1	- 1	- 1	- 1
>1018	+ 9	+15	+22	+36	+ 59	+ 93	+153	+ 4	+ 7	+10	+ 3	+ 6	+ 8	+15
>1010	+ 5	+ 8	+12	+20	+ 34	+ 54	+ 90	0	0	0	- 1	- 1	- 1	- 1
>1830	+11	+17	+28	+44	+ 71	+110	+178	+ 6	+ 8	+15	+ 4	+ 7	+11	+18
>1030	+ 6	+ 9	+16	+25	+ 41	+ 64	+104	+ 1	0	+ 3	- 1	- 1	- 1	- 1
>3050	+13	+21	+33	+52	+ 85	+136	+212	+ 7	+10	+18	+ 5	+ 8	+13	+21
>3030	+ 7	+12	+19	+30	+ 50	+ 80	+124	+ 1	+ 1	+ 4	- 1	- 1	- 1	- 1
>5080	+16	+25	+39	+62	+102	+161	+255	+10	+13	+21	+ 6	+10	+16	+25
>5060	+ 9	+14	+22	+36	+ 60	+ 94	+150	+ 3	+ 2	+ 4	- 1	- 1	- 1	- 1
>80120	+18	+29	+45	+73	+119	+187	+297	+12	+16	+25	+ 7	+12	+18	+30
>0U1∠U	+10	+16	+26	+42	+ 70	+110	+174	+ 4	+ 3	+ 6	- 1	- 1	- 1	- 1
>120180	+21	+34	+53	+85	+136	+212	+340	+14	+20	+31	+ 8	+14	+22	+35
∕12U…10U	+12	+20	+30	+50	+ 80	+124	+200	+ 5	+ 6	+ 8	- 1	0	- 1	0

Diamètre en	e nominal mm			Toléra	nces ma	xi. et mir		sibles pa a toléran			mètre no	minal d1	en µm		
de	à	K6	K7	K8	M6	M7	M8	N6	N7	N8	N9	N10	N11	P6	P7
	0	- 1	- 2	- 3	- 3	- 4		- 5	- 6	- 7	- 8	-10	- 13	- 7	- 8
1	3	- 4	- 6	- 8	- 6	- 8		- 8	-10	-12	-17	-24	- 34	-10	-12
3	6	0	+ 1	+ 2	- 3	- 2	- 1	- 7	- 6	- 5	- 5	- 8	- 12	-11	-10
3	0	- 3	- 4	- 5	- 6	- 7	- 8	-10	-11	-12	-16	-25	- 39	-14	-15
6	10	0	+ 2	+ 2	- 5	- 3	- 3	- 9	- 7	- 7	- 6	- 9	- 14	-14	-12
0	10	- 4	- 4	- 6	- 9	- 9	-11	-13	-13	-15	-19	-30	- 46	-18	-18
10	18	0	+ 3	+ 3	- 6	- 3	- 3	-11	- 8	- 8	- 7	-11	- 17	-17	-14
10	10	- 4	- 4	- 7	-10	-10	-13	-15	-15	-18	-23	-36	- 56	-21	-21
18	30	0	+ 2	+ 5	- 6	- 4	- 1	-13	-11	- 8	- 8	-13	- 20	-20	-1
10	30	- 5	- 6	- 7	-11	-12	-13	-18	-19	-20	-27	-43	- 66	-25	-26
30	50	0	+ 3	+ 6	- 7	- 4	- 1	-15	-12	- 9	-10	-15	- 24	-24	-21
30	30	- 6	- 6	- 8	-13	-13	-15	-21	-21	-23	-32	-50	- 80	-30	-30
50	80	+ 1	+ 4	+ 7	- 8	- 5	- 2	-17	-14	-11	-12	-18	- 29	-29	-26
30	00	- 6	- 7	-10	-15	-16	-19	-24	-25	-28	-38	-60	- 96	-36	-37
80	120	0	+ 4	+ 7	-10	- 6	- 3	-20	-16	-13	-14	-21	- 33	-34	-30
00	120	- 8	- 9	-12	-18	-19	-22	-28	-29	-32	-45	-70	-110	-42	-43
120	180	0	+ 6	+10	-12	- 6	- 2	-24	-18	-14	-15	-24	- 38	-40	-43
120	100	- 9	- 8	-13	-21	-20	-25	-33	-32	-37	-50	-80	-126	-49	-48

Tolérance de fabrication

(Tolérances R ... Z) DIN 1420

Diamètre en n			٦	Tolérances	s maxi. et	mini. adm pour	issibles pa la toléran			tre nomina	al d1 en µ	m	
de	à	R6	R7	S6	S7	T6	U6	U7	U10	X10	X11	Z10	Z11
		- 11	- 12	- 15	- 16		- 19	- 20				- 32	
1	3	- 14	- 16	- 18	- 20		- 22	- 24				- 46	
0	0	- 14	- 13	- 18	- 17		- 22	- 21	- 31			- 43	
3	6	- 17	- 18	- 21	- 22		- 25	- 26	- 48			- 60	
6	10	- 18	- 16	- 22	- 20		- 27	- 25	- 37			- 51	
б	10	- 22	- 22	- 26	- 26		- 31	- 31	- 58			- 72	
10	14	- 22	- 19	- 27	- 24		- 32	- 29	- 44			- 61	
10	14	- 26	- 26	- 31	- 31		- 36	- 36	- 69			- 86	
14	18	- 22	- 19	- 27	- 24		- 32	- 29	- 44	- 56		- 71	
14	10	- 26	- 26	- 31	- 31		- 36	- 36	- 69	- 81		- 96	
18	24	- 26	- 24	- 33	- 31		- 39	- 37		- 67		- 86	
10	24	- 31	- 32	- 38	- 39		- 44	- 45		- 97		-116	
24	30	- 26	- 24	- 33	- 31	- 39	- 46	- 44		- 77		-101	-108
24	30	- 31	- 32	- 38	- 39	- 44	- 51	- 52		-107		-131	-154
30	40	- 32	- 29	- 41	- 38	- 46	- 58	- 55		- 95		-127	-136
30	40	- 38	- 38	- 47	- 47	- 52	- 64	- 64		-130		-162	-192
40	50	- 32	- 29	- 41	- 38	- 52	- 68	- 65	- 85	-112		-151	-160
40	30	- 38	- 38	- 47	- 47	- 58	- 74	- 74	-120	-147		-186	-216
50	65	- 38	- 35	- 50	- 47	- 63	- 84	- 81	-105	-140	-151	-190	-201
30	00	- 45	- 46	- 57	- 58	- 70	- 91	- 92	-147	-182	-218	-232	-268
65	80	- 40	- 37	- 56	- 53	- 72	- 99	- 96	-120	-164	-175	-228	-239
00		- 47	- 48	- 63	- 64	- 79	-106	-107	-162	-206	-242	-270	-306
80	100	- 48	- 44	- 68	- 64	- 88	-121	-117	-145	-199	-211	-279	-291
00	100	- 56	- 57	- 76	- 77	- 96	-129	-130	-194	-248	-288	-328	-368
100	120	- 51	- 47	- 76	- 72	-101	-141	-137	-165	-231	-243	-331	-343
100	120	- 59	- 60	- 84	- 85	-109	-149	-150	-214	-280	-320	-380	-420
120	140	- 60	- 54	- 89	- 83	-119	-167	-161	-194	-272	-286	-389	-403
120	1,0	- 69	- 68	- 98	- 97	-128	-176	-175	-250	-328	-374	-445	-491
140	160	- 62	- 56	- 97	- 91	-131	-187	-181	-214	-304	-318	-439	-453
		- 71	- 70	-106	-105	-140	-196	-195	-270	-360	-406	-495	-541
160	180	- 65	- 59	-105	- 99	-143	-207	-201	-234	-334	-348	-489	-503
100	100	- 74	- 73	-114	-113	-152	-216	-215	-290	-390	-436	-545	-591



Tolérances ISO

DIN ISO 286-1

Dimensions nominales						IT er	ı µm					
mm	3	4	5	6	7	8	9	10	11	12	13	14
de 1 à 3	2	3	4	6	10	14	25	40	60	100	140	250
au-dessus de 3 jusqu'à 6	2.5	4	5	8	12	18	30	48	75	120	180	300
au-dessus de 6 jusqu'à 10	2.5	4	6	9	15	22	36	58	90	150	220	360
au-dessus de 10 jusqu'à 18	3	5	8	11	18	27	43	70	110	180	270	430
au-dessus de 18 jusqu'à 30	4	6	9	13	21	33	52	84	130	210	330	520
au-dessus de 30 jusqu'à 50	4	7	11	16	25	39	62	100	160	250	390	620
au-dessus de 50 jusqu'à 80	5	8	13	19	30	46	74	120	190	300	460	740
au-dessus de 80 jusqu'à 120	6	10	15	22	35	54	87	140	220	350	540	870

Exemples de tolérances ISO pour dim. nominales de 18 à 30 mm

Tolérances de fabrication suivant DIN 1420

Remarques générales sur le choix des tolérances de fabrication des alésoirs

Les tolérances de fabrication suivant cette norme sont prévues pour des tolérances d'alésage bien définies. En principe, elles assurent un résultat d'alésage dans la zone de tolérance de façon à ce que l'alésoir puisse être exploité au maximum.

Le diamètre de l'alésoir, les angles des arêtes de coupe, la géométrie de l'entrée, le bridage de la pièce, le mandrin, l'état de la machine, la lubrification, le refroidissement et la matière à aléser sont tous les facteurs qui influencent les dimensions et la tolérance de l'alésage réalisé. Dans certains cas, il est nécessaire de choisir des tolérances de fabrication de l'alésoir autres que IT 7 (H7) mieux appropriées au cas d'alésage spécifique.

Toutefois pour rationaliser la fabrication des alésoirs, réduire les frais de stockage, être compatible avec d'autres produits, il est recommandé de ne pas abuser des tolérances spéciales et de les réserver aux cas exceptionnels.

Pour définir les tolérances de fabrication, il faut respecter les règles de base suivantes:

Définition du diamètre maxi. et mini. des alésoirs

Le diamètre maxi. admissible d1max est d'environ 15% inférieur à la tolérance maximale (0,15 IT) du diamètre d'alésage (voir fig.), cette valeur 0.15 IT sera arrondie au -µm-supérieur, de façon à n'avoir que des valeurs en µm pour d1max. Le diamètre mini. admissible d1 min est d'environ 35% inférieur à la tolérance maximale (0,35 IT) du diamètre d'alésage d1max*.

Comment trouver rapidement les valeurs des tolérances minimales et maximales

Afin de simplifier les calculs, les tableaux sur la page 47 indiquent les limites hautes et basses des tolérances usuelles H sur le diamètre nominal d1. A l'aide de ces tableaux, vous pouvez calculer les diamètres maxi et mini des alésoirs.

Exemple 1

Diamètre nominal d1 = 20,000 mm Diamètre maxi. de l'alésage = 20,021 mm Tolérance de l'alésage (IT 7) = 0,021 mm 15% de la tolérance (0,15 IT 7) = 0,0031 mm ≈ 0.004 mm

Diamètre maxi. de l'alésoir::

 $d_{1 \text{ max}} = 20,021 - 0,004 = 20,017 \text{ mm}$

Tolérance de fabrication:

35% de la tolérance (0,35 IT 7) = 0,0073 mm

≈ 0,008 mm

Diamètre mini. de l'alésoir:

 $d_{1 \text{ min}} = d_{1 \text{ max}} - 0.35 \text{ IT } 7$ = 20.017 - 0.008

= <u>20,009 mm</u>

Calcul simple des tolérances admissibles, Maxi et Mini, pour les alésoirs.

Exemple: Tolérance de l'alésage Ø 20 H 7 / Diamètre nominal d1 de l'alésoir 20 mm

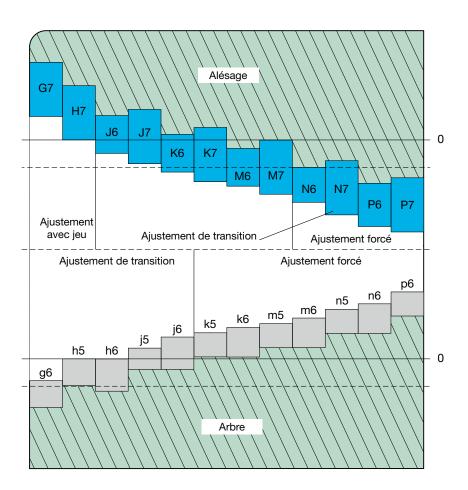
Référence Ø 20,00 mm

Désignations suivant DIN 1420

Désignation

Pour désigner un alésoir, il faut inscrire l'abréviation ISO de la tolérance aprés le diamètre nominal. Désignation de l'alésoir avec diamètre nominal d1 = 20 mm, pour un alésage H 7:

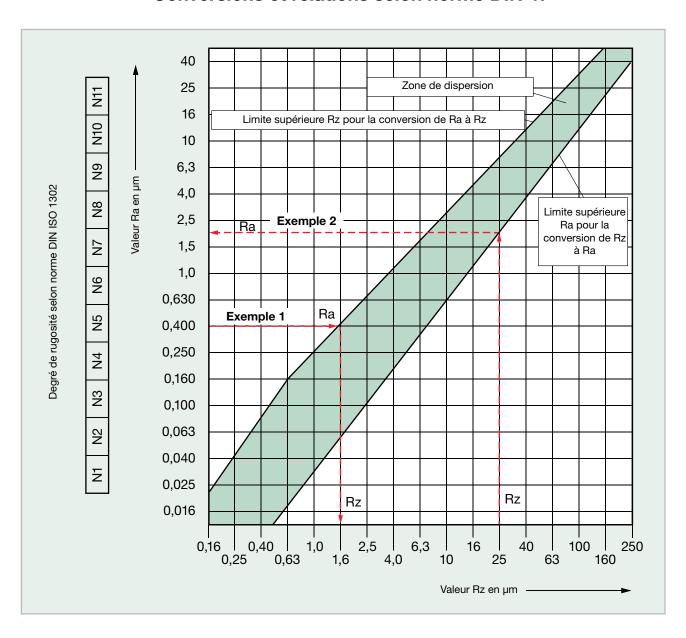
Alésoir 20 H 7 DIN ... (" ... " pour le N° de la DIN de l'alésoir approprié)


Dans les cas spéciaux, il est nécessaire d'inscrire les cotes maxi. et mini. ; l'abréviation ISO pour la tolérance doit être

remplacée par les limites hautes et basses de tolérance en μ m, ex: pour un alésoir avec un diamètre nominal d1 = 20 mm, tolérance maxi. = + (p) 25 μ m et une tolérance basse = + (p) 15 μ m:

Alésoir 20 p 25 p 15 DIN ...

Sur les désignations, les signes »+« et »-« sont remplacés par les lettres "p" et "m", car toutes les machines ne peuvent reproduire ces signes.


Positionnement de la tolérance

Qualité de l'état de surface

Conversions et relations selon norme DIN 47

Exemple 1 : Conversion Ra en Rz

Lors de la comparaison de la rugosité moyenne Ra = 0,4 μ m en rugosité moyenne Rz, la valeur Rz est = 1,6.

Exemple 2 : Conversion Rz en Ra

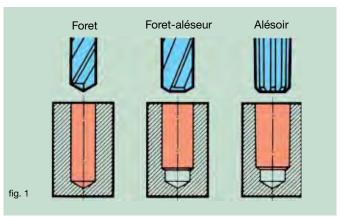
Lors de la comparaison de la rugosité moyenne Rz = 25 μ m en rugosité moyenne Ra, la valeur Ra est = 2 μ m.

Possibilité d'obtention de qualité de l'état de surface en alésage

	Classe de rugosité	N11	N10	N9	N8		N7	N6		N5	N4	N3	N2	N1
	Rugosité moyenne Ra		12,5	6,3	3,2		1,6	0,8	······	0,4	0,2	0,1	0,05	0,025
	Rugosité déterminée Rz	100	63	40	25	16	10	6,3	4	2,5	1,6	1	0,63	0,25
Р	Acier de construction, faiblement allié : Acier de cémentation er d'amélioration													
М	Acier inoxydable et réfractaire													
	Fonte grise ferritique													
K	Fonte grise perlitique													
, r	Fonte à graphite sphéroïdal ferritique													
	Fonte à graphite sphéroïdal perlitique													
	Alliages de cuivre, laiton													
N	Alliage d'aluminium corroyé													
i IN	Alliage d'aluminium de fonderie Si < 10%													
	Alliage d'aluminium de fonderie Si > 10%													
S	Alliages spéciaux: Inconel													
J	Titane, alliage de titane													
Н	Acier trempé < 45 HRC													
11	Acier trempé > 45 HRC jusqu'à < 63 HRC													

Possibilité d'obtention

Plaquettes de coupe


Table de conversion des duretés

Rm				Rm			
(N/mm ²)	HRC	HB30	HV10	(N/mm ²)	HRC	HB30	HV10
240		71	75	1110	35	328	345
255		76	80	1140	36	337	355
270		81	85	1170	37	346	364
285		86	90	1200	38	354	373
305		90	95	1230	39	363	382
320		95	100	1260	40	372	392
335		100	105	1300	41	383	403
350		105	110	1330	42	393	413
370		109	115	1360	43	402	423
385		114	120	1400	44	413	434
400		119	125	1440	45	424	446
415		124	130	1480	46	435	458
430		128	135	1530	47	449	473
450		133	140	1570	48	460	484
465		138	145	1620	49	472	497
480		143	150	1680	50	488	514
495		143	155	1730	51	501	527
510		152	160	1790	52	517	544
		157		1845	53	532	560
530 545			165 170	1910	54	549	578
560		162 166	170 175	1980	55	567	596
			175				
575		171	180	2050	56 57	584	615
595		176	185	2140	57 50	607	639 655
610		181	190	2180	58	622	
625		185	195		59		675
640		190	200		60		698
660		195	205		61		720
675		199	210		62		745
690		204	215		63		773
705		209	220		64		800
720		214	225		65		829
740		219	230		66		864
755		223	235		67		900
770		228	240		68		940
785		233	245				
800	22	238	250				
820	23	242	255				
835	24	247	260				
860	25	255	268				
870	26	258	272				
900	27	266	280				
920	28	273	287				
940	29	278	293				
970	30	287	302				
995	31	295	310				
1020	32	301	317				
1050	33	311	327				
1080	34	319	336				

Choix et applications

L'alésoir est le plus commun des outils de finition, utilisé pour obtenir une bonne géométrie avec une tolérance serrée et un état de surface de qualité supérieure. L'état de surface obtenu est généralement d'un niveau de qualité "finition" ou ,finition fine" d'environ Ra 0,2 à 6,5 µm suivant DIN 4766. Toutefois Ra 0,5 µm est déjà un bon résultat. La valeur de tolérance est généralement IT 7, mais des tolérances comme IT 6 ou même IT 5 peuvent être réalisées avec des alésoirs spécialement rectifiés pour des cas particuliers ou lorsque les conditions d'usinage permettant d'obtenir de telles qualités sont respectées.

Avant d'aléser, il faut percer un trou avec un foret et en suite usiner avec le foret-aléseur afin de pouvoir terminer l'alésage avec l'alésoir (fig 1). Les perçages obtenus en forage sont difficiles à aléser car la matière est superficiellement écrouie. D'autre part les perçages réalisés par le forage, c'est-à-dire avec des forets 1 lèvre sont déjà de qualité supérieure et ne nécessitent plus un alésage supplémentaire. Nous pouvons vous donner plus de renseignements à ce sujet. N'hésitez pas à nous contacter.

Comment bien choisir un alésoir?

En fonction de leurs applications, nous distinguons les:

- alésoirs à main
- alésoirs machine

Alésoirs à main

Alésoirs à main sont entraînés manuellement par leur carré d'entraînement dans les perçages à aléser, avec un tourne-àgauche où il est nécessaire d'exercer des forces axiales afin de faire pénétrer l'alésoir.(fig 2) Ces alésoirs sont en HSS, à cause de leur faible valeur de coupe. Pour assurer un meilleur guidage de l'outil, l'entrée de ces alésoirs est assez longue par rapport aux alésoirs machine. Il existe des alésoirs à main cylindriques et coniques.

Les alésoirs expansibles au milieu suivant DIN 859 peuvent être réglés jusqu'à la limite de l'élasticité des aciers rapides, c'est-à-dire environ jusqu'à 1 % du diamètre, par ex: 0,10 mm pour un alésoir de 10 mm de diamètre. Ces alésoirs sont assez fragiles, c'est pourquoi il faut éviter les chocs et débloquer la vis de réglage après l'alésage.

Les alésoirs à réglage rapide peuvent se dilater jusqu'à plusieurs mm. Pour plus de précisions, il est nécessaire de les régler à l'aide d'une bague étalon.

Règle de base pour les alésoirs à main: ne tourner que dans le sens de la coupe, par conséquent jamais dans le sens contraire comme par exemple les tarauds, car les arêtes de coupe se détérioreraient tout de suite.

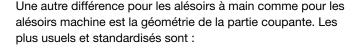
fig. 4: Alésoir à lames, à réglage rapide

Les alésoirs machine

Les alésoirs machine, comme leur nom l'indique, ne peuvent être utilisés que sur des machines. Selon les conditions de coupe, les alésoirs sont en acier rapide, carbure monobloc ou carbure à plaquettes rapportées (fig. 5). Ici aussi et sans exception, le choix de l'alésoir dépend de la matière à usiner.

fig. 5: Alésoir machine à plaquettes carbure rapportées

Les alésoirs carbure offrent les avantages suivants:


- Vitesse de coupe et d'avance supérieures
- Usinage économique des matières > 1200 mm² de résistance.
- Longévité de l'outil supérieure à celle des alésoirs en HSS-E.

Choix et applications

Les Alésoirs avec forme spéciale

Les Alésoirs avec forme spéciale et tolérances spéciales sont de plus en plus demandés. Leur fabrication demande un grand savoir faire et des machines modernes. Nous avons les machines et le savoir-faire pour fabriquer les outils, même les plus complexes, de manière économique. Nos ingénieurs sont là pour vous aider, pour solutionner votre cas d'usinage particulier avec un outil de conception optimale.

- alésoirs à goujures droites
- alésoirs à goujures hélicoïdales, à gauche
- alésoirs à coupe descendante (45°) goujures à gauche

Les alésoirs à goujures hélicoïdales à droite sont assez peu utilisés, ils dégagent les copeaux vers l'arrière, ce qui donne un état de surface de l'alésage insatisfaisant.

Les alésoirs à goujures droites s'utilisent surtout pour les alésages borgnes, car les copeaux n'ont pas de place au fond du perçage et restent dans les goujures avant d'être retirés de l'alésage. Pour tous les autres cas d'usinages spécialement pour les coupes interrompues (rainures de perçage perpendiculaires, inclinées ou autres) il est conseillé d'utiliser des alésoirs à goujures hélicoïdales à gauche qui poussent les copeaux vers la sortie. D'ailleurs ces alésoirs s'utilisent pour les trous débouchants comme pour les trous borgnes, s'il y a assez de place au fond de l'alésage.

fig. 6: Alésoir machine à coupe descendante

fig. 7: Alésoir machine à coupe frontale

Les alésoirs à goujures hélicoïdales à 45° à gauche (fig. 6) sont conçus pour les matières à copeaux longs. Vitesse de coupe et avance plus élevées que pour les autres alésoirs. Pour obtenir un positionnement exact et une rectitude parfaite des alésages profonds, il est conseillé d'utiliser les alésoirs à coupe frontale suivant norme usine (fig. 7). Grâce à la coupe frontale, l'alésoir ne suit pas le perçage mais il le redresse, toutefois cet alésoir doit être guidé par un canon de perçage.

fig. 8: Alésoir machine, avec ébaucheur à plaquettes CW rapportées

Pour obtenir un état de surface de qualité supérieure et une géométrie parfaite, nous conseillons l'utilisation des alésoirs d'ébauche et de finition. Les alésoirs machine avec ébaucheur combinent partie ébauche et finition (fig. 8) et assurent l'alésage en une seule opération.

Le cône trop usé des alésoirs coniques, peut facilement être réaffûté; toutefois il faut détalonner chacune des arêtes de coupe.

Précautions de rangement

Les alésoirs sont des outils de finition, ils sont donc très fragiles. Il faut donc absolument les conserver dans leur emballage d'origine pour les transporter et les entreposer. Vous pourrez alors obtenir de bons résusltats d'alésages, une longue durée de vie et une bonne tenue de coupe.

Recommandations spécifiques pour alésage avec alésoirs machine

Alésages borgnes ou débouchants

En principe, lorsqu'il s'agit d'aléser des perçages borgnes, l'on utilise des alésoirs à goujures droites. Ainsi, leur géométrie de coupe favorise, à contresens de la coupe, la bonne évacuation des copeaux, en arrière, vers l'extérieur de l'alésage. Toutefois, pour les alésages débouchants, il est recommandé d'utiliser des alésoirs à goujures hélicoïdales à gauche qui elles, évacuent les copeaux vers l'extérieur de l'alésage dans le sens de la coupe.

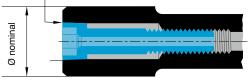
Coupe interrompue

Lorsqu'il s'agit de perçages à coupe interrompue, il est recommandé d'utiliser des alésoirs à goujures hélicoïdales qui eux, par rapport aux alésoirs à goujures droites, résistent mieux aux interruptions de la coupe car leur taux de portance est plus élevé et ils ont moins tendance à s'accrocher dans les rainurages ou dans les perçages transversaux. Lorsque le diamètre du perçage transversal est > 0,25 x D, il est aussi possible d'utiliser des alésoirs à goujures hélicoïdales dans les alésages borgnes.

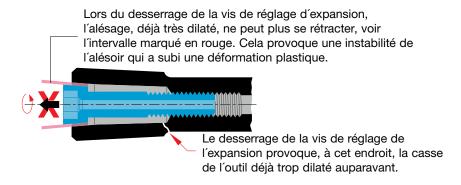
Valeur de la surépaisseur dans le perçage avant l'alésage

Lorsque la valeur de la surépaisseur du perçage avant l'alésage dépasse la valeur moyenne de 0,20 à 0,30 mm, il est recommandé d'utiliser, ou les alésoirs à coupe descendante, ou les alésoirs de chaudronnerie, voire les alésoirs machine en cw pourvus

d'un ébaucheur. Avec ces outils, il est possible d'aléser des perçages avec une surépaisseur beaucoup plus forte, toutefois, de par leur longueur d'entrée très importante et leur grand angle de goujures, il faut éviter leur utilisation dans les alésages borgnes.


Alésoirs réglables et expansibles

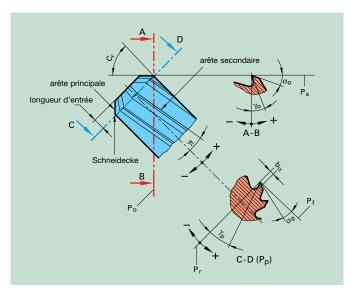
Le diamètre des alésoirs expansibles ne peut qu'augmenter. Si le diamètre d'alésage à réaliser est trop important, il n'est plus possible de le diminuer en desserrant la vis de réglage car la précontrainte ne serrait plus assurée. Dans la plupart des cas, sans précontrainte, l'outil se casse systématiquement. Ci – dessous, nous vous démontrons le fonctionnement et les effets de réglage. Lorsque la précontrainte sur l'alésoir est éliminée, il faut absolument de nouveau ajuster et rectifier l'alésoir.


Précision de positionnement d'alésage

De par la géométrie optimisée de son entrée, l'alésoir à coupe frontale est très souvent la solution idéale pour assurer un alignement précis d'alésage. Ce type d'alésoir ne suit pas le perçage réalisé avant l'alésage. En plus, les alésoirs à coupe frontale sont très souvent utilisés afin de corriger les erreurs d'alignements entre les perçages réalisés et les alésages à réaliser. Sur demande, la Société Hartner réalise des alésoirs à coupe frontale en CW.

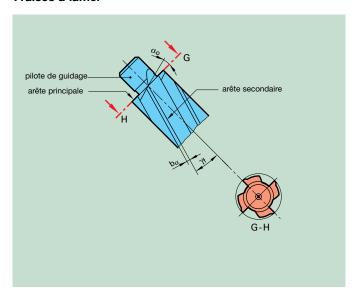
Représentation schématique du réglage de l'expansion et des risques de casse de l'outil lors du desserrage de la vis de réglage de l'expansion (représentation excessive) Sans jeu et sans intervalle entre la tête conique de la vis de réglage de l'expansion et la paroi de l'alésage conique

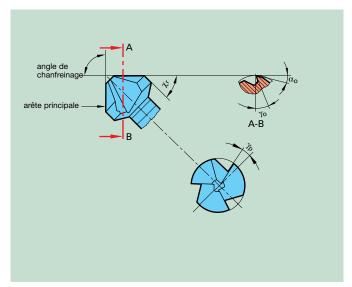
En serrant la vis de réglage de l'expansion, angle d'expansion obtenu lors de l'agrandissement du diamètre de coupe de l'alésoir



Eléments de base

Définitions, dimensions et angles

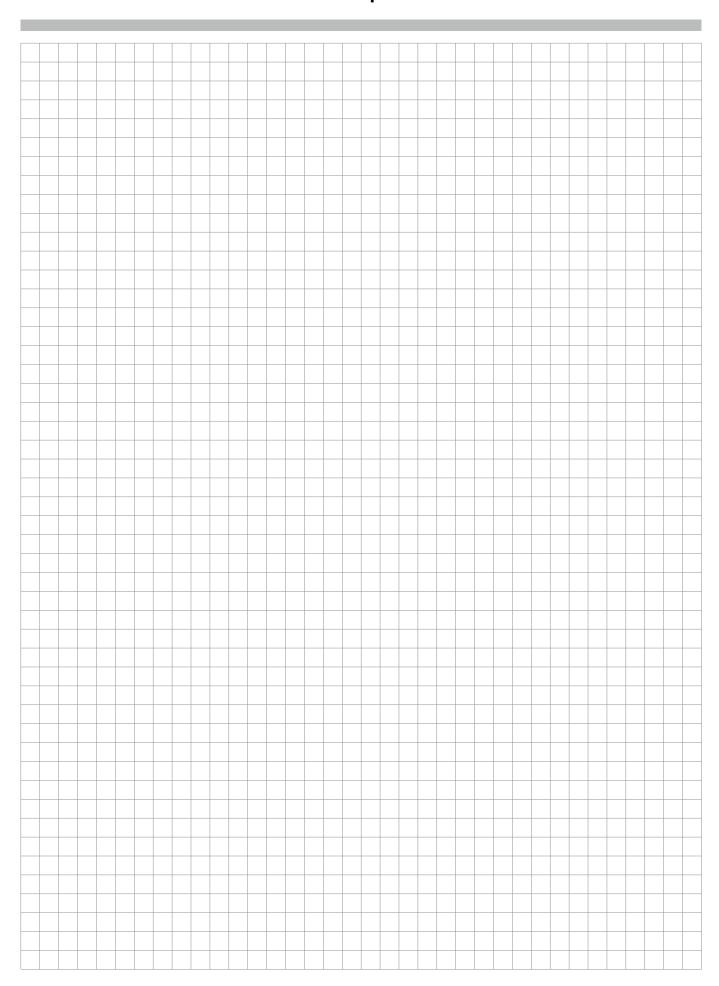

Alésoirs


Fraises à lamer

pilote de guidage

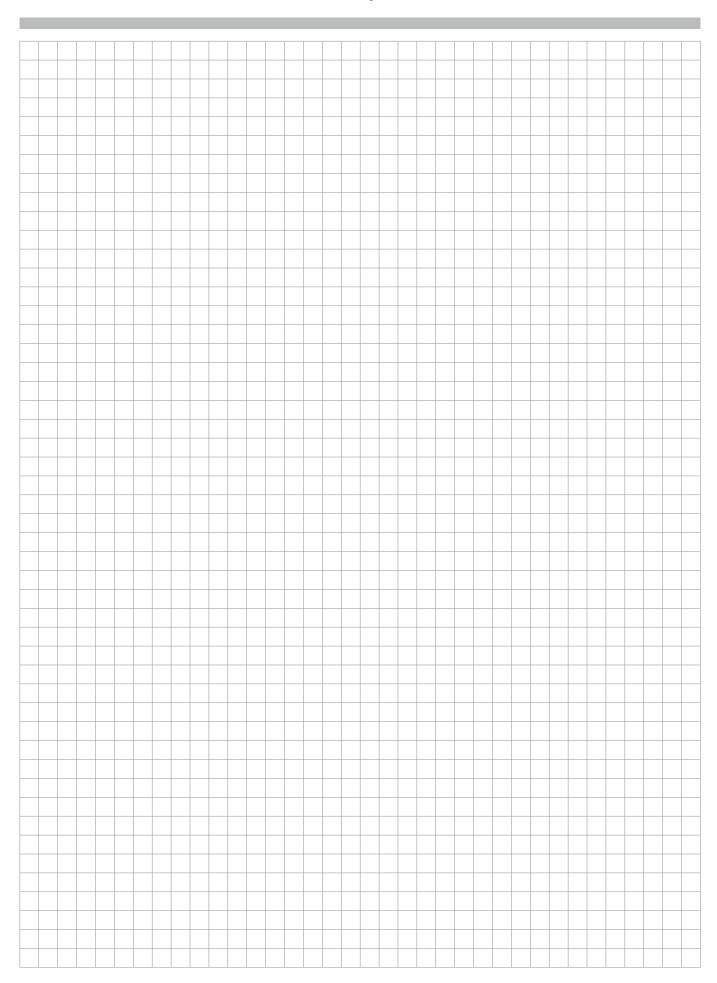
arête principale

Fraises à chanfreiner


 α_{o} = angle de dépouille de l'arête principale α_{p} = angle de dépouille de l'arête secondaire b_{α} = largeur du listel γ_{o} = angle de coupe de l'arête principale γ_{f} = angle d'hélice

= angle de coupe de l'arête secondaire

 $\begin{array}{lll} \chi_{r} &=& \text{angle d'attaque} \\ P_{o} &=& \text{coupe orthogonale} \\ P_{f} &=& \text{plan th\'eorique de coupe} \\ P_{p} &=& \text{plan de coupe de l'ar\rete secondaire} \\ P_{r} &=& \text{plan de r\'ef\'erence} \\ P_{s} &=& \text{plan de coupe principale} \end{array}$



Remarques

Remarques

▼ FU 500 / FN 500

▼ FORETS DE PERÇAGE POUR FORAGES PROFONDS

▼ FORETS INOX

▼ MICROFORETS

▼ OUTILS DE TARAUDAGE

▼ FORETS TS

▼ TF 100 MULTI-MILL

▼ FRAISES EN CW

▼ FRAISES À CHANFREINER

▼ MULTIPLEX

▼ MULTIPLEX HPC

▼ AUTOMATE DE GESTION D'OUTILS TM

HARTNER GMBH

Boîte postale 10 04 27 | 72425 Albstadt | Allemagne Tél. +49 74 31 125-0 | Fax +49 74 31 125-21 547

www.hartner.de

